Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Palladium-catalyzed asymmetric migratory diarylation of unactivated directing-group-free internal alkenes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 January 2026

Palladium-catalyzed asymmetric migratory diarylation of unactivated directing-group-free internal alkenes

  • Linlin Fan1,
  • Yang Xi1,
  • Honglei Gu1,
  • Wenyi Huang1,
  • Wei-Hong Zhu  ORCID: orcid.org/0000-0001-9103-166X1,
  • Jingping Qu  ORCID: orcid.org/0000-0002-7576-07981 &
  • …
  • Yifeng Chen  ORCID: orcid.org/0000-0003-3239-62091,2,3 

Nature Communications , Article number:  (2026) Cite this article

  • 4467 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Asymmetric catalysis
  • Synthetic chemistry methodology

Abstract

Enantioselective dicarbofunctionalization of alkenes is a powerful strategy for constructing functionalized sp³-rich molecules, yet it remains challenging for unactivated substrates lacking directing groups. While asymmetric multicomponent reactions catalyzed by d¹⁰ transition metals have advanced for activated alkenes, enantioselective multicomponent cross-coupling of unactivated alkenes, particularly enabling remote functionalization to stereoselectively generate the nonadjacent stereocenters, is still underdeveloped. Herein, we report a palladium-catalyzed asymmetric migratory dicarbofunctionalization of directing-group-free, trisubstituted unactivated alkenes. This method forges remote stereogenic centers, enabling both 1,3-diarylation and 1,4-diarylation with high enantioselectivity and diastereoselectivity. Mechanistic studies indicate a chain-walking process involving irreversible Pd-H migration, rationalizing the observed regiocontrol.

Similar content being viewed by others

Palladium-catalyzed regio- and enantioselective migratory allylic C(sp3)-H functionalization

Article Open access 24 September 2021

Palladium-catalysed enantioselective diacetoxylation of terminal alkenes

Article 15 February 2021

Diastereo- and enantioselective 1,3-hydrofunctionalization of trisubstituted alkenes by a directing relay

Article 17 September 2025

Data availability

All data to support the conclusions are available in the main text or the supplementary materials. The X-ray Crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Center (CCDC) under deposition numbers CCDC 2474573 (4ae) and 2475482 (6a-D). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Data supporting the findings of this manuscript are also available from the corresponding author upon request.

References

  1. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: in creasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Google Scholar 

  2. Stokes, B. J., Liao, L., de Andrade, A. M., Wang, Q. & Sigman, M. S. A palladium-catalyzed three-component-coupling strategy for the differential vicinal diarylation of terminal 1,3-dienes. Org. Lett. 16, 4666–4669 (2014).

    Google Scholar 

  3. Werner, E. W., Mei, T.-S., Burckle, A. J. & Sigman, M. S. Enantioselective Heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. Science 338, 1455–1458 (2012).

    Google Scholar 

  4. Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocenters. Nature 508, 340–344 (2014).

    Google Scholar 

  5. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    Google Scholar 

  6. Giri, R. & Kc, S. Strategies toward dicarbofunctionalization of unactivated olefins by combined Heck carbometalation and cross-coupling. J. Org. Chem. 83, 3013–3022 (2018).

    Google Scholar 

  7. Kang, T., Apolinar, O. & Engle, K. M. Ni- and Pd-catalyzed enantioselective 1,2-dicarbofunctionalization of alkenes. Synthesis 56, 1–15 (2024).

    Google Scholar 

  8. Qi, X. & Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).

    Google Scholar 

  9. Luo, Y.-C., Xu, C. & Zhang, X. Nickel-catalyzed dicarbofunctionalization of alkenes. Chin. J. Chem. 38, 1371–1394 (2020).

    Google Scholar 

  10. Zhu, S., Zhao, X., Li, H. & Chu, L. Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chem. Soc. Rev. 50, 10836–10856 (2021).

    Google Scholar 

  11. Li, Z.-L., Fang, G.-C., Gu, Q.-S. & Liu, X.-Y. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes. Chem. Soc. Rev. 49, 32–48 (2020).

    Google Scholar 

  12. Xu, B., Wang, Q., Fang, C., Zhang, Z.-M. & Zhang, J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem. Soc. Rev. 53, 883–971 (2024).

    Google Scholar 

  13. Coombs, J. R. & Morken, J. P. Catalytic enantioselective functionalization of unactivated terminal alkenes. Angew. Chem. Int. Ed. 55, 2636–2649 (2016).

    Google Scholar 

  14. Dhungana, R. K., KC, S., Basnet, P. & Giri, R. Transition metal-catalyzed dicarbofunctionalization of unactivated olefins. Chem. Rec. 18, 1314–1340 (2018).

    Google Scholar 

  15. Wang, H. & Koh, M. J. Directing group-free approaches for three-component catalytic dicarbofunctionalization of unactivated alkenes. Cell Rep. Phys. Sci. 3, 100901 (2022).

    Google Scholar 

  16. Han, J., He, R. & Wang, C. Transition metal-catalyzed asymmetric three-component dicarbofunctionalization of unactivated alkenes. Chem. Catal. 3, 100690 (2023).

    Google Scholar 

  17. Xi, Y. et al. Catalytic asymmetric diarylation of internal acyclic styrenes and enamides. J. Am. Chem. Soc. 144, 8389–8398 (2022).

    Google Scholar 

  18. Huang, W. et al. Palladium-catalyzed enantioselective multi-component cross-coupling of trisubstituted olefins. J. Am. Chem. Soc. 146, 16892–16901 (2024).

    Google Scholar 

  19. Gu, J. W., Min, Q.-Q., Yu, L.-C. & Zhang, X. Tandem difluoro-alkylation-arylation of enamides catalyzed by nickel. Angew. Chem. Int. Ed. 55, 12270–12274 (2016).

    Google Scholar 

  20. Chierchia, M., Xu, P., Lovinger, G. J. & Morken, J. P. Enantioselective radical addition/cross-coupling of organozinc reagents, alkyl iodides, and alkenyl boron reagents. Angew. Chem. Int. Ed. 58, 14245–14249 (2019).

    Google Scholar 

  21. Anthony, D., Lin, Q., Baudet, J. & Diao, T. Nickel-catalyzed asymmetric reductive diarylation of vinylarenes. Angew. Chem. Int. Ed. 58, 3198–3202 (2019).

    Google Scholar 

  22. Wei, X., Shu, W., García-Domínguez, A., Merino, E. & Nevado, C. Asymmetric Ni-catalyzed radical relayed reductive coupling. J. Am. Chem. Soc. 142, 13515–13522 (2020).

    Google Scholar 

  23. Guo, L. et al. General method for enantioselective three-component carboarylation of alkenes enabled by visible-light dual photoredox/nickel catalysis. J. Am. Chem. Soc. 142, 20390–20399 (2020).

    Google Scholar 

  24. Liu, C.-F. et al. Synthesis of tri- and tetrasubstituted stereocenters by nickel-catalyzed enantioselective olefin cross-couplings. Nat. Catal. 5, 934–942 (2022).

    Google Scholar 

  25. Li, X. et al. Three-component enantioselective alkenylation of organophosphonates via nickel metallaphotoredox catalysis. Chem 9, 154–169 (2023).

    Google Scholar 

  26. Wang, Y.-Z. et al. Enantioselective reductive cross-couplings of olefins by merging electrochemistry with nickel catalysis. J. Am. Chem. Soc. 145, 23910–23917 (2023).

    Google Scholar 

  27. Hu, X., Cheng-Sánchez, l., Kong, W., Molander, G. A. & Nevado, C. C. et al. Nickel-catalysed enantioselective alkene dicarbofunctionalization enabled by photochemical aliphatic C–H bond activation. Nat. Catal. 7, 655–665 (2024).

    Google Scholar 

  28. Li, X. et al. Metallaphotoredox-catalyzed three-component asymmetric cross electrophile coupling for chiral boronate synthesis. ACS. Catal. 14, 15790–15798 (2024).

    Google Scholar 

  29. Ye, F., Xu, Y., Zheng, S., Huang, G. & Yuan, W. Enantioselective synthesis of chiral γ-amino acid esters via photoredox/nickel-catalyzed aryl-aminoalkylation of alkenes. Chin. J. Chem. 43, 1862–1868 (2025).

    Google Scholar 

  30. Gao, X. et al. Nickel/photoredox-catalyzed asymmetric three-component cross coupling to access enantioenriched 1,1-diaryl(heteroaryl)alkanes. Org. Lett. 26, 8792–8797 (2024).

    Google Scholar 

  31. Yamamoto, E. et al. Development and analysis of a Pd(0)-catalyzed enantioselective 1,1-diarylation of acrylates enabled by chiral anion phase transfer. J. Am. Chem. Soc. 138, 15877–15880 (2016).

    Google Scholar 

  32. Orlandi, M., Hilton, M. J., Yamamoto, E., Toste, F. D. & Sigman, M. S. Mechanistic investigations of the Pd(0)-catalyzed enantioselective 1,1-diarylation of benzyl acrylates. J. Am. Chem. Soc. 139, 12688–12695 (2017).

    Google Scholar 

  33. Tu, H.-Y. et al. Enantioselective three-component fluoroalkylarylation of unactivated olefins through nickel-catalyzed cross-electrophile coupling. J. Am. Chem. Soc. 142, 9604–9611 (2020).

    Google Scholar 

  34. Wang, F., Pan, S., Zhu, S. & Chu, L. Selective three-component reductive alkylalkenylation of unbiased alkenes via carbonyl-directed nickel catalysis. ACS Catal. 12, 9779–9789 (2022).

    Google Scholar 

  35. Apolinar, O. et al. Three-Component asymmetric Ni-catalyzed 1,2-dicarbofunctionalization of unactivated alkenes via stereoselective migratory insertion. J. Am. Chem. Soc. 144, 19337–19343 (2022).

    Google Scholar 

  36. Dong, Z. et al. Directed asymmetric nickel-catalyzed reductive 1,2-diarylation of electronically unactivated alkenes. Angew. Chem. Int. Ed. 135, e202218286 (2023).

    Google Scholar 

  37. Dong, Z. et al. Enantioselective directed nickel-catalyzed three-component reductive arylalkylation of alkenes via the carbometalation/radical cross-coupling Sequence. ACS Catal. 14, 4395–4406 (2024).

    Google Scholar 

  38. Wang, Z.-C. et al. Enantioselective C–C cross-coupling of unactivated alkene. Nat. Catal. 6, 1087–1097 (2023).

    Google Scholar 

  39. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    Google Scholar 

  40. Li, Y., Wu, D., Cheng, H.-G. & Yin, G. Difunctionalization of alkenes involving metal migration. Angew. Chem. Int. Ed. 59, 7990–8003 (2020).

    Google Scholar 

  41. Dhungana, R. K., Sapkota, R. R., Niroula, D. & Giri, R. Walking metals: catalytic difunctionalization of alkenes at nonclassical sites. Chem. Sci. 11, 9757–9774 (2020).

    Google Scholar 

  42. Wang, Y., He, Y. & Zhu, S. NiH-catalyzed functionalization of remote and proximal olefins: new reactions and innovative strategies. Acc. Chem. Res. 55, 3519–3536 (2022).

    Google Scholar 

  43. Rodrigalvarez, J., Haut, F.-L. & Martin, R. Regiodivergent sp3 C−H functionalization via Ni-catalyzed chain-walking reactions. JACS Au 3, 3270–3282 (2023).

    Google Scholar 

  44. Han, C. Palladium-catalyzed remote 1,n-arylamination of unactivated terminal alkenes. ACS Catal. 9, 4196–4202 (2019).

    Google Scholar 

  45. Hamasaki, T., Aoyama, Y., Kawasaki, J., Kakiuchi, F. & Kochi, T. Chain walking as a strategy for carbon−carbon bond formation at unreactive sites in organic synthesis: catalytic cycloisomerization of various 1,n-dienes. J. Am. Chem. Soc. 137, 16163–16171 (2015).

    Google Scholar 

  46. Lin, L., Romano, C. & Mazet, C. Palladium-catalyzed long-range deconjugative isomerization of highly substituted α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc. 138, 10344–10350 (2016).

    Google Scholar 

  47. Kohler, D. G., Gockel, S. N., Kennemur, J. L., Waller, P. J. & Hull, K. L. Palladium-catalysed anti-markovnikov selective oxidative amination. Nat. Chem. 10, 333–340 (2018).

    Google Scholar 

  48. Li, X. et al. Regio- and enantioselective remote dioxygenation of internal alkenes. Nat. Chem. 15, 862–871 (2023).

    Google Scholar 

  49. Chen, X.-X., Luo, H., Chen, Y.-W., Liu, Y. & He, Z.-T. Enantioselective palladium-catalyzed directed migratory allylation of remote dienes. Angew. Chem. Int. Ed. 62, e20230726 (2023).

    Google Scholar 

  50. Wang, Z., Zhu, J., Wang, M. & Lu, P. Palladium-catalyzed divergent enantioselective functionalization of cyclobutenes. J. Am. Chem. Soc. 146, 12691–12701 (2024).

    Google Scholar 

  51. Wang, Y.-C., Liu, J.-B. & He, Z.-T. Palladium-catalyzed asymmetric hydrofunctionalizations of conjugated dienes. Chin. J. Org. Chem. 43, 2614–2627 (2023).

    Google Scholar 

  52. Basnet, P. et al. Ni-catalyzed regioselective β,δ-diarylation of unactivated olefins in ketimines via ligand-enabled contraction of transient nickellacycles: rapid access to remotely diarylated ketones. J. Am. Chem. Soc. 140, 7782–7786 (2018).

    Google Scholar 

  53. Dhungana, R. et al. Ni(I)-catalyzed β,δ-vinylarylation of γ,δ-alkenyl α-cyanocarboxylic esters via contraction of transient nickellacycles. ACS Catal. 9, 10887–10893 (2019).

    Google Scholar 

  54. Li, W., Boon, J. & Zhao, Y. Nickel-catalyzed difunctionalization of allyl moieties using organoboronic acids and halides with divergent regioselectivities. Chem. Sci. 9, 600–607 (2018).

    Google Scholar 

  55. Liu, Z., D’Amico, F. & Martin, R. Regiodivergent radical-relay alkene dicarbofunctionalization. J. Am. Chem. Soc. 146, 28624–28629 (2024).

    Google Scholar 

  56. Meng, H. et al. Ni-catalyzed regioselective and site-divergent reductive arylalkylations of allylic amines. Chem. Sci. 16, 4442–4449 (2025).

    Google Scholar 

  57. Wu, X., Qu, J. & Chen, Y. Quinim: A new ligand scaffold enables nickel-catalyzed enantioselective synthesis of α-alkylated γ-lactam. J. Am. Chem. Soc. 142, 15654–15660 (2020).

    Google Scholar 

  58. Wu, X. et al. Catalytic desymmetric dicarbofunctionalization of unactivated alkenes. Angew. Chem. Int. Ed. 61, e202111598 (2022).

    Google Scholar 

  59. Wu, X. et al. Nickel-catalyzed enantioselective reductive alkyl-carbamoylation of internal alkenes. Angew. Chem. Int. Ed. 61, e202207536 (2022).

    Google Scholar 

  60. Wu, X., Li, H., He, F., Qu, J. & Chen, Y. Nickel/Quinim enabled asymmetric carbamoyl-acylation of unactivated alkenes. Chin. J. Chem. 41, 1673–1678 (2023).

    Google Scholar 

  61. Xi, Y., Wang, C., Zhang, Q., Qu, J. & Chen, Y. Palladium-catalyzed regio-, diastereo-, and enantioselective 1,2-arylfluorination of internal enamides. Angew. Chem. Int. Ed. 60, 2699–2703 (2021).

    Google Scholar 

  62. Zhang, C., Xi, Y., Qu, J. & Chen, Y. Pd-catalyzed diastereoselective 1,1-diarylation of 1,1-disubstituted alkenes enabling the modular synthesis of 1,1,2,2-tetraarylethanes. Sci. China Chem. 66, 3539–3545 (2023).

    Google Scholar 

  63. Wang, C., Xi, Y., Xia, T., Qu, J. & Chen, Y. Pd(0)-catalyzed diastereoselective and enantioselective intermolecular Heck–Miyaura borylation of internal enamides for the β-aminoboronate ester synthesis. ACS Catal. 14, 418–425 (2024).

    Google Scholar 

  64. Xi, Y. et al. Palladium-catalyzed intermolecular asymmetric dearomatizative arylation of indoles and benzofurans. Sci. Adv. 11, eadw4471 (2025).

    Google Scholar 

  65. Ji, C.-L., Zou, X.-Z. & Gao, D.-W. Catalytic asymmetric construction of nonadjacent stereoelements. Angew. Chem. Int. Ed. 64, e202504224 (2025).

    Google Scholar 

  66. Kong, M. M. et al. Catalytic reductive cross coupling and enantioselective protonation of olefins to construct remote stereocenters for azaarenes. J. Am. Chem. Soc. 143, 4024–4031 (2021).

    Google Scholar 

  67. Deng, Y. et al. One-step asymmetric construction of 1,4-stereocenters via tandem Mannich-isomerization reactions mediated by a dual-functional betaine catalyst. JACS Au 2, 2678–2685 (2022).

    Google Scholar 

  68. Chang, X. et al. Stereodivergent construction of 1,4-nonadjacent stereocenters via hydroalkylation of racemic allylic alcohols enabled by copper/ruthenium relay catalysis. Angew. Chem. Int. Ed. 61, e202206517 (2022).

    Google Scholar 

  69. Zhang, J. et al. Synergistic Pd/Cu-catalyzed 1,5-double chiral inductions. J. Am. Chem. Soc. 146, 9241–9251 (2024).

    Google Scholar 

  70. Zhao, W., Lin, E.-Z., Chen, K.-Z., Sun, Y.-W. & Li, B.-J.  Diastereo- and enantioselective 1,3-hydrofunctionalization of trisubstituted alkenes by a directing relay. Nat. Chem. https://doi.org/10.1038/s41557-025-01936-3 (2025).

  71. Catellani, M. et al. Palladium−Arene interactions in catalytic intermediates:  an experimental and theoretical investigation of the soft rearrangement between η1 and η2 coordination modes. J. Am. Chem. Soc. 124, 4336–4346 (2002).

    Google Scholar 

  72. Muto, K., Hatanaka, M., Kakiuchi, F. & Kochi, T. Conformational isomerization as a process to determine selectivity over reaction pathways: effect of alkene rotation in chain walking via cis alkene intermediates. J. Org. Chem. 89, 4712–4721 (2024).

    Google Scholar 

  73. Zhang, S., Yamamoto, Y. & Bao, M. Benzyl palladium intermediates: unique and versatile reactive intermediates for aromatic functionalization. Adv. Synth. Catal. 363, 587–601 (2021).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22371071, 22571081, 92356301, Y.C.), Science and Technology Commission of Shanghai Municipality (grant No.24DX1400200, Y.C.), the Program of Introducing Talents of Discipline to Universities (B16017, Y.C.), the China Postdoctoral Science Foundation (2024M750901, 2023TQ0118, Y.X.), Postdoctoral Fellowship Program of CPSF (GZB20230212, Y.X.), and the Fundamental Research Funds for the Central Universities. We thank the Analysis and Testing Center of East China University of Science and Technology for help with NMR and HRMS analysis.

Author information

Authors and Affiliations

  1. Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, China

    Linlin Fan, Yang Xi, Honglei Gu, Wenyi Huang, Wei-Hong Zhu, Jingping Qu & Yifeng Chen

  2. State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China

    Yifeng Chen

  3. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China

    Yifeng Chen

Authors
  1. Linlin Fan
    View author publications

    Search author on:PubMed Google Scholar

  2. Yang Xi
    View author publications

    Search author on:PubMed Google Scholar

  3. Honglei Gu
    View author publications

    Search author on:PubMed Google Scholar

  4. Wenyi Huang
    View author publications

    Search author on:PubMed Google Scholar

  5. Wei-Hong Zhu
    View author publications

    Search author on:PubMed Google Scholar

  6. Jingping Qu
    View author publications

    Search author on:PubMed Google Scholar

  7. Yifeng Chen
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.C. conceived the projects. L.F., Y.X., H.G., and W.H. performed the experiments under the supervision of W.-H. Z., J.Q., and Y.C. Y.X. and Y.C. wrote the manuscript with the feedback of all other authors.

Corresponding author

Correspondence to Yifeng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jiuzhong Huang and the other anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Xi, Y., Gu, H. et al. Palladium-catalyzed asymmetric migratory diarylation of unactivated directing-group-free internal alkenes. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68006-7

Download citation

  • Received: 18 September 2025

  • Accepted: 15 December 2025

  • Published: 05 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68006-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing