Abstract
Enantioselective dicarbofunctionalization of alkenes is a powerful strategy for constructing functionalized sp³-rich molecules, yet it remains challenging for unactivated substrates lacking directing groups. While asymmetric multicomponent reactions catalyzed by d¹⁰ transition metals have advanced for activated alkenes, enantioselective multicomponent cross-coupling of unactivated alkenes, particularly enabling remote functionalization to stereoselectively generate the nonadjacent stereocenters, is still underdeveloped. Herein, we report a palladium-catalyzed asymmetric migratory dicarbofunctionalization of directing-group-free, trisubstituted unactivated alkenes. This method forges remote stereogenic centers, enabling both 1,3-diarylation and 1,4-diarylation with high enantioselectivity and diastereoselectivity. Mechanistic studies indicate a chain-walking process involving irreversible Pd-H migration, rationalizing the observed regiocontrol.
Similar content being viewed by others
Data availability
All data to support the conclusions are available in the main text or the supplementary materials. The X-ray Crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Center (CCDC) under deposition numbers CCDC 2474573 (4ae) and 2475482 (6a-D). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Data supporting the findings of this manuscript are also available from the corresponding author upon request.
References
Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: in creasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).
Stokes, B. J., Liao, L., de Andrade, A. M., Wang, Q. & Sigman, M. S. A palladium-catalyzed three-component-coupling strategy for the differential vicinal diarylation of terminal 1,3-dienes. Org. Lett. 16, 4666–4669 (2014).
Werner, E. W., Mei, T.-S., Burckle, A. J. & Sigman, M. S. Enantioselective Heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. Science 338, 1455–1458 (2012).
Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocenters. Nature 508, 340–344 (2014).
McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).
Giri, R. & Kc, S. Strategies toward dicarbofunctionalization of unactivated olefins by combined Heck carbometalation and cross-coupling. J. Org. Chem. 83, 3013–3022 (2018).
Kang, T., Apolinar, O. & Engle, K. M. Ni- and Pd-catalyzed enantioselective 1,2-dicarbofunctionalization of alkenes. Synthesis 56, 1–15 (2024).
Qi, X. & Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).
Luo, Y.-C., Xu, C. & Zhang, X. Nickel-catalyzed dicarbofunctionalization of alkenes. Chin. J. Chem. 38, 1371–1394 (2020).
Zhu, S., Zhao, X., Li, H. & Chu, L. Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chem. Soc. Rev. 50, 10836–10856 (2021).
Li, Z.-L., Fang, G.-C., Gu, Q.-S. & Liu, X.-Y. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes. Chem. Soc. Rev. 49, 32–48 (2020).
Xu, B., Wang, Q., Fang, C., Zhang, Z.-M. & Zhang, J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem. Soc. Rev. 53, 883–971 (2024).
Coombs, J. R. & Morken, J. P. Catalytic enantioselective functionalization of unactivated terminal alkenes. Angew. Chem. Int. Ed. 55, 2636–2649 (2016).
Dhungana, R. K., KC, S., Basnet, P. & Giri, R. Transition metal-catalyzed dicarbofunctionalization of unactivated olefins. Chem. Rec. 18, 1314–1340 (2018).
Wang, H. & Koh, M. J. Directing group-free approaches for three-component catalytic dicarbofunctionalization of unactivated alkenes. Cell Rep. Phys. Sci. 3, 100901 (2022).
Han, J., He, R. & Wang, C. Transition metal-catalyzed asymmetric three-component dicarbofunctionalization of unactivated alkenes. Chem. Catal. 3, 100690 (2023).
Xi, Y. et al. Catalytic asymmetric diarylation of internal acyclic styrenes and enamides. J. Am. Chem. Soc. 144, 8389–8398 (2022).
Huang, W. et al. Palladium-catalyzed enantioselective multi-component cross-coupling of trisubstituted olefins. J. Am. Chem. Soc. 146, 16892–16901 (2024).
Gu, J. W., Min, Q.-Q., Yu, L.-C. & Zhang, X. Tandem difluoro-alkylation-arylation of enamides catalyzed by nickel. Angew. Chem. Int. Ed. 55, 12270–12274 (2016).
Chierchia, M., Xu, P., Lovinger, G. J. & Morken, J. P. Enantioselective radical addition/cross-coupling of organozinc reagents, alkyl iodides, and alkenyl boron reagents. Angew. Chem. Int. Ed. 58, 14245–14249 (2019).
Anthony, D., Lin, Q., Baudet, J. & Diao, T. Nickel-catalyzed asymmetric reductive diarylation of vinylarenes. Angew. Chem. Int. Ed. 58, 3198–3202 (2019).
Wei, X., Shu, W., García-Domínguez, A., Merino, E. & Nevado, C. Asymmetric Ni-catalyzed radical relayed reductive coupling. J. Am. Chem. Soc. 142, 13515–13522 (2020).
Guo, L. et al. General method for enantioselective three-component carboarylation of alkenes enabled by visible-light dual photoredox/nickel catalysis. J. Am. Chem. Soc. 142, 20390–20399 (2020).
Liu, C.-F. et al. Synthesis of tri- and tetrasubstituted stereocenters by nickel-catalyzed enantioselective olefin cross-couplings. Nat. Catal. 5, 934–942 (2022).
Li, X. et al. Three-component enantioselective alkenylation of organophosphonates via nickel metallaphotoredox catalysis. Chem 9, 154–169 (2023).
Wang, Y.-Z. et al. Enantioselective reductive cross-couplings of olefins by merging electrochemistry with nickel catalysis. J. Am. Chem. Soc. 145, 23910–23917 (2023).
Hu, X., Cheng-Sánchez, l., Kong, W., Molander, G. A. & Nevado, C. C. et al. Nickel-catalysed enantioselective alkene dicarbofunctionalization enabled by photochemical aliphatic C–H bond activation. Nat. Catal. 7, 655–665 (2024).
Li, X. et al. Metallaphotoredox-catalyzed three-component asymmetric cross electrophile coupling for chiral boronate synthesis. ACS. Catal. 14, 15790–15798 (2024).
Ye, F., Xu, Y., Zheng, S., Huang, G. & Yuan, W. Enantioselective synthesis of chiral γ-amino acid esters via photoredox/nickel-catalyzed aryl-aminoalkylation of alkenes. Chin. J. Chem. 43, 1862–1868 (2025).
Gao, X. et al. Nickel/photoredox-catalyzed asymmetric three-component cross coupling to access enantioenriched 1,1-diaryl(heteroaryl)alkanes. Org. Lett. 26, 8792–8797 (2024).
Yamamoto, E. et al. Development and analysis of a Pd(0)-catalyzed enantioselective 1,1-diarylation of acrylates enabled by chiral anion phase transfer. J. Am. Chem. Soc. 138, 15877–15880 (2016).
Orlandi, M., Hilton, M. J., Yamamoto, E., Toste, F. D. & Sigman, M. S. Mechanistic investigations of the Pd(0)-catalyzed enantioselective 1,1-diarylation of benzyl acrylates. J. Am. Chem. Soc. 139, 12688–12695 (2017).
Tu, H.-Y. et al. Enantioselective three-component fluoroalkylarylation of unactivated olefins through nickel-catalyzed cross-electrophile coupling. J. Am. Chem. Soc. 142, 9604–9611 (2020).
Wang, F., Pan, S., Zhu, S. & Chu, L. Selective three-component reductive alkylalkenylation of unbiased alkenes via carbonyl-directed nickel catalysis. ACS Catal. 12, 9779–9789 (2022).
Apolinar, O. et al. Three-Component asymmetric Ni-catalyzed 1,2-dicarbofunctionalization of unactivated alkenes via stereoselective migratory insertion. J. Am. Chem. Soc. 144, 19337–19343 (2022).
Dong, Z. et al. Directed asymmetric nickel-catalyzed reductive 1,2-diarylation of electronically unactivated alkenes. Angew. Chem. Int. Ed. 135, e202218286 (2023).
Dong, Z. et al. Enantioselective directed nickel-catalyzed three-component reductive arylalkylation of alkenes via the carbometalation/radical cross-coupling Sequence. ACS Catal. 14, 4395–4406 (2024).
Wang, Z.-C. et al. Enantioselective C–C cross-coupling of unactivated alkene. Nat. Catal. 6, 1087–1097 (2023).
Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).
Li, Y., Wu, D., Cheng, H.-G. & Yin, G. Difunctionalization of alkenes involving metal migration. Angew. Chem. Int. Ed. 59, 7990–8003 (2020).
Dhungana, R. K., Sapkota, R. R., Niroula, D. & Giri, R. Walking metals: catalytic difunctionalization of alkenes at nonclassical sites. Chem. Sci. 11, 9757–9774 (2020).
Wang, Y., He, Y. & Zhu, S. NiH-catalyzed functionalization of remote and proximal olefins: new reactions and innovative strategies. Acc. Chem. Res. 55, 3519–3536 (2022).
Rodrigalvarez, J., Haut, F.-L. & Martin, R. Regiodivergent sp3 C−H functionalization via Ni-catalyzed chain-walking reactions. JACS Au 3, 3270–3282 (2023).
Han, C. Palladium-catalyzed remote 1,n-arylamination of unactivated terminal alkenes. ACS Catal. 9, 4196–4202 (2019).
Hamasaki, T., Aoyama, Y., Kawasaki, J., Kakiuchi, F. & Kochi, T. Chain walking as a strategy for carbon−carbon bond formation at unreactive sites in organic synthesis: catalytic cycloisomerization of various 1,n-dienes. J. Am. Chem. Soc. 137, 16163–16171 (2015).
Lin, L., Romano, C. & Mazet, C. Palladium-catalyzed long-range deconjugative isomerization of highly substituted α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc. 138, 10344–10350 (2016).
Kohler, D. G., Gockel, S. N., Kennemur, J. L., Waller, P. J. & Hull, K. L. Palladium-catalysed anti-markovnikov selective oxidative amination. Nat. Chem. 10, 333–340 (2018).
Li, X. et al. Regio- and enantioselective remote dioxygenation of internal alkenes. Nat. Chem. 15, 862–871 (2023).
Chen, X.-X., Luo, H., Chen, Y.-W., Liu, Y. & He, Z.-T. Enantioselective palladium-catalyzed directed migratory allylation of remote dienes. Angew. Chem. Int. Ed. 62, e20230726 (2023).
Wang, Z., Zhu, J., Wang, M. & Lu, P. Palladium-catalyzed divergent enantioselective functionalization of cyclobutenes. J. Am. Chem. Soc. 146, 12691–12701 (2024).
Wang, Y.-C., Liu, J.-B. & He, Z.-T. Palladium-catalyzed asymmetric hydrofunctionalizations of conjugated dienes. Chin. J. Org. Chem. 43, 2614–2627 (2023).
Basnet, P. et al. Ni-catalyzed regioselective β,δ-diarylation of unactivated olefins in ketimines via ligand-enabled contraction of transient nickellacycles: rapid access to remotely diarylated ketones. J. Am. Chem. Soc. 140, 7782–7786 (2018).
Dhungana, R. et al. Ni(I)-catalyzed β,δ-vinylarylation of γ,δ-alkenyl α-cyanocarboxylic esters via contraction of transient nickellacycles. ACS Catal. 9, 10887–10893 (2019).
Li, W., Boon, J. & Zhao, Y. Nickel-catalyzed difunctionalization of allyl moieties using organoboronic acids and halides with divergent regioselectivities. Chem. Sci. 9, 600–607 (2018).
Liu, Z., D’Amico, F. & Martin, R. Regiodivergent radical-relay alkene dicarbofunctionalization. J. Am. Chem. Soc. 146, 28624–28629 (2024).
Meng, H. et al. Ni-catalyzed regioselective and site-divergent reductive arylalkylations of allylic amines. Chem. Sci. 16, 4442–4449 (2025).
Wu, X., Qu, J. & Chen, Y. Quinim: A new ligand scaffold enables nickel-catalyzed enantioselective synthesis of α-alkylated γ-lactam. J. Am. Chem. Soc. 142, 15654–15660 (2020).
Wu, X. et al. Catalytic desymmetric dicarbofunctionalization of unactivated alkenes. Angew. Chem. Int. Ed. 61, e202111598 (2022).
Wu, X. et al. Nickel-catalyzed enantioselective reductive alkyl-carbamoylation of internal alkenes. Angew. Chem. Int. Ed. 61, e202207536 (2022).
Wu, X., Li, H., He, F., Qu, J. & Chen, Y. Nickel/Quinim enabled asymmetric carbamoyl-acylation of unactivated alkenes. Chin. J. Chem. 41, 1673–1678 (2023).
Xi, Y., Wang, C., Zhang, Q., Qu, J. & Chen, Y. Palladium-catalyzed regio-, diastereo-, and enantioselective 1,2-arylfluorination of internal enamides. Angew. Chem. Int. Ed. 60, 2699–2703 (2021).
Zhang, C., Xi, Y., Qu, J. & Chen, Y. Pd-catalyzed diastereoselective 1,1-diarylation of 1,1-disubstituted alkenes enabling the modular synthesis of 1,1,2,2-tetraarylethanes. Sci. China Chem. 66, 3539–3545 (2023).
Wang, C., Xi, Y., Xia, T., Qu, J. & Chen, Y. Pd(0)-catalyzed diastereoselective and enantioselective intermolecular Heck–Miyaura borylation of internal enamides for the β-aminoboronate ester synthesis. ACS Catal. 14, 418–425 (2024).
Xi, Y. et al. Palladium-catalyzed intermolecular asymmetric dearomatizative arylation of indoles and benzofurans. Sci. Adv. 11, eadw4471 (2025).
Ji, C.-L., Zou, X.-Z. & Gao, D.-W. Catalytic asymmetric construction of nonadjacent stereoelements. Angew. Chem. Int. Ed. 64, e202504224 (2025).
Kong, M. M. et al. Catalytic reductive cross coupling and enantioselective protonation of olefins to construct remote stereocenters for azaarenes. J. Am. Chem. Soc. 143, 4024–4031 (2021).
Deng, Y. et al. One-step asymmetric construction of 1,4-stereocenters via tandem Mannich-isomerization reactions mediated by a dual-functional betaine catalyst. JACS Au 2, 2678–2685 (2022).
Chang, X. et al. Stereodivergent construction of 1,4-nonadjacent stereocenters via hydroalkylation of racemic allylic alcohols enabled by copper/ruthenium relay catalysis. Angew. Chem. Int. Ed. 61, e202206517 (2022).
Zhang, J. et al. Synergistic Pd/Cu-catalyzed 1,5-double chiral inductions. J. Am. Chem. Soc. 146, 9241–9251 (2024).
Zhao, W., Lin, E.-Z., Chen, K.-Z., Sun, Y.-W. & Li, B.-J. Diastereo- and enantioselective 1,3-hydrofunctionalization of trisubstituted alkenes by a directing relay. Nat. Chem. https://doi.org/10.1038/s41557-025-01936-3 (2025).
Catellani, M. et al. Palladium−Arene interactions in catalytic intermediates: an experimental and theoretical investigation of the soft rearrangement between η1 and η2 coordination modes. J. Am. Chem. Soc. 124, 4336–4346 (2002).
Muto, K., Hatanaka, M., Kakiuchi, F. & Kochi, T. Conformational isomerization as a process to determine selectivity over reaction pathways: effect of alkene rotation in chain walking via cis alkene intermediates. J. Org. Chem. 89, 4712–4721 (2024).
Zhang, S., Yamamoto, Y. & Bao, M. Benzyl palladium intermediates: unique and versatile reactive intermediates for aromatic functionalization. Adv. Synth. Catal. 363, 587–601 (2021).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (22371071, 22571081, 92356301, Y.C.), Science and Technology Commission of Shanghai Municipality (grant No.24DX1400200, Y.C.), the Program of Introducing Talents of Discipline to Universities (B16017, Y.C.), the China Postdoctoral Science Foundation (2024M750901, 2023TQ0118, Y.X.), Postdoctoral Fellowship Program of CPSF (GZB20230212, Y.X.), and the Fundamental Research Funds for the Central Universities. We thank the Analysis and Testing Center of East China University of Science and Technology for help with NMR and HRMS analysis.
Author information
Authors and Affiliations
Contributions
Y.C. conceived the projects. L.F., Y.X., H.G., and W.H. performed the experiments under the supervision of W.-H. Z., J.Q., and Y.C. Y.X. and Y.C. wrote the manuscript with the feedback of all other authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Jiuzhong Huang and the other anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Fan, L., Xi, Y., Gu, H. et al. Palladium-catalyzed asymmetric migratory diarylation of unactivated directing-group-free internal alkenes. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68006-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-025-68006-7


