Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
3D biomimetic niche modulates embryo development in vitro
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 January 2026

3D biomimetic niche modulates embryo development in vitro

  • Jia Guo  (郭佳)1,2 na1,
  • Jiawei Lyu  (吕嘉伟)1,3 na1,
  • Zili Gao  (高子力)1,3 na1,
  • Tan Jia  (贾坦)1,3,4 na1,
  • Leyun Wang  (王乐韵)  ORCID: orcid.org/0000-0003-4448-01411,5 na1,
  • Jingxi Dong  (董菁熙)1,3,
  • Zhen Gu  (顾振)6,7,
  • Shen Ji  (季申)1,3,
  • Wei Li  (李伟)  ORCID: orcid.org/0000-0001-7864-404X1,3,4,
  • Hongmei Wang  (王红梅)  ORCID: orcid.org/0000-0003-1603-47851,3,4,
  • Jinglei Zhai  (翟晶磊)1,3,
  • Leqian Yu  (于乐谦)  ORCID: orcid.org/0000-0003-2060-463X1,3,4,
  • Guihai Feng  (冯桂海)  ORCID: orcid.org/0000-0002-8726-17341,3,4,
  • Qi Zhou  (周琪)  ORCID: orcid.org/0000-0002-6549-93621,3,4 &
  • …
  • Qi Gu  (顾奇)  ORCID: orcid.org/0000-0001-9387-95251,3,4 

Nature Communications , Article number:  (2026) Cite this article

  • 4709 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biomaterials
  • Embryology
  • Gastrulation

Abstract

Embryo development undergoes critical morphological transformations post-implantation, largely driven by the complex and dynamic microenvironment of the uterus. Despite advances, current 3D culture models inadequately recapitulate the uterine environment necessary for studying embryo-uterus interactions. In this work, we engineer a hydrogel inspired by the properties of the decidua, incorporating Matrigel to support blastocyst implantation and embryo development in vitro. Our findings reveal that embryos cultured within this hydrogel system successfully progress to an early organogenesis-like stage, including the development of first and second heart fields, mimicking natural embryogenesis. Moreover, we identify that the mechanical properties, particularly stress relaxation, play a crucial role in facilitating focal adhesion (FA) formation between the trophoblast and the hydrogel. Additionally, the degradation of the hydrogel by embryo-secreted metalloproteinases (MMP2 and MMP9) creates a favorable environment for continued embryonic growth and development. These insights contribute to a deeper understanding of how the external environment regulates embryo development and offer an enhanced approach for in vitro embryo culture.

Similar content being viewed by others

Oviductal extracellular matrix hydrogels enhance in vitro culture of rabbit embryos and reduce deficiencies during assisted reproductive technologies

Article Open access 11 November 2024

Endometrial decidualization status modulates endometrial microvascular complexity and trophoblast outgrowth in gelatin methacryloyl hydrogels

Article Open access 24 June 2024

Reconstructing aspects of human embryogenesis with pluripotent stem cells

Article Open access 21 September 2021

Data availability

The scRNA-Sequence data generated in this study have been deposited in the Chinese Academy of Sciences database under accession code PRJCA004049 [http://gsa.big.ac.cn/]. The SmartSeq2 data generated in this study have been deposited in the Chinese Academy of Sciences database under accession code PRJCA052100 [http://gsa.big.ac.cn/]. Source data are provided with this paper.

Code availability

The data analysis customized scripts are available to download from GitHub (https://github.com/dongjingxi/embryo-development-in-vitro.git).

References

  1. Aguilera-Castrejon, A. et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature 593, 119 (2021).

    Google Scholar 

  2. Peng, G. et al. Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature 572, 528–532 (2019).

    Google Scholar 

  3. Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490 (2019).

    Google Scholar 

  4. Zheng, Y. et al. Controlled modelling of human epiblast and amnion development using stem cells. Nature 573, 421 (2019).

    Google Scholar 

  5. Hantak, A. M., Bagchi, I. C. & Bagchi, M. K. Role of uterine stromal-epithelial crosstalk in embryo implantation. Int. J. Dev. Biol. 58, 139–146 (2014).

    Google Scholar 

  6. Jones-Paris, C. R. et al. Embryo implantation triggers dynamic spatiotemporal expression of the basement membrane toolkit during uterine reprogramming. Matrix Biol. 57-58, 347–365 (2017).

    Google Scholar 

  7. D’Occhio, M. J., Campanile, G., Zicarelli, L., Visintin, J. A. & Baruselli, P. S. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation-role in establishing a pregnancy in cattle: A review. Mol. Reprod. Dev. 87, 206–222 (2020).

    Google Scholar 

  8. Campas, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183 (2014).

    Google Scholar 

  9. Chan, C. J. et al. Hydraulic control of mammalian embryo size and cell fate. Nature 571, 112 (2019).

    Google Scholar 

  10. Mammoto, T. & Ingber, D. E. Mechanical control of tissue and organ development. Development 137, 1407–1420 (2010).

    Google Scholar 

  11. Valet, M., Siggia, E. D. & Brivanlou, A. H. Mechanical regulation of early vertebrate embryogenesis. Nat. Rev. Mol. Cell Biol. 23, 169–184 (2022).

    Google Scholar 

  12. Leonavicius, K. et al. Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay. Proc. Natl. Acad. Sci. USA 115, 10375–10380 (2018).

    Google Scholar 

  13. Saadaoui, M., Rocancourt, D., Roussel, J., Corson, F. & Gros, J. A tensile ring drives tissue flows to shape the gastrulating amniote embryo. Science 367, 453–458 (2020).

    Google Scholar 

  14. New, D. A. T. & Stein, K. F. Cultivation of mouse embryos in vitro. Nature 199, 297 (1963).

    Google Scholar 

  15. Jenkinson, E. J. & Wilson, I. B. In-vitro support system for study of blastocyst differentiation in mouse. Nature 228, 776–778 (1970).

    Google Scholar 

  16. Bedzhov, I., Leung, C. Y., Bialecka, M. & Zernicka-Goetz, M. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protoc. 9, 2732–2739 (2014).

    Google Scholar 

  17. Bedzhov, I. & Zernicka-Goetz, M. Self-Organizing Properties of Mouse Pluripotent Cells Initiate Morphogenesis upon Implantation. Cell 156, 1032–1044 (2014).

    Google Scholar 

  18. Ichikawa, T. et al. An ex vivo system to study cellular dynamics underlying mouse peri-implantation development. Dev. Cell 57, 373–386 (2022).

    Google Scholar 

  19. Govindasamy, N. et al. 3D biomimetic platform reveals the first interactions of the embryo and the maternal blood vessels. Dev. Cell 56, 3276–3287 (2021).

    Google Scholar 

  20. Ozguldez, H. O. & Bedzhov, I. In vitro culture of mouse blastocysts to the egg cylinder stage via mural trophectoderm excision. Methods Mol. Biol. 2214, 31–40 (2021).

    Google Scholar 

  21. Shao, Y. et al. Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nat. Mater. 16, 419–427 (2017).

    Google Scholar 

  22. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7, 733–736 (2010).

    Google Scholar 

  23. Panciera, T. et al. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nat. Mater. 19, 797 (2020).

    Google Scholar 

  24. Wei, Z., Schnellmann, R., Pruitt, H. C. & Gerecht, S. Hydrogel network dynamics regulate vascular morphogenesis. Cell Stem Cell 27, 798–812 (2020).

    Google Scholar 

  25. Adebowale, K. et al. Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Nat. Mater. 20, 1290–1299 (2021).

    Google Scholar 

  26. Guo, J. et al. 3D printed controllable microporous scaffolds support embryonic development in vitro. J. Cell. Physiol. 8, 3408–3420 (2022).

    Google Scholar 

  27. Gu, Z. et al. A uterus-inspired niche drives blastocyst development to the early organogenesis. Adv. Sci. 28, e2202282 (2022).

    Google Scholar 

  28. Amadei, G. et al. Embryo model completes gastrulation to neurulation and organogenesis. Nature 610, 143–153 (2022).

    Google Scholar 

  29. Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).

    Google Scholar 

  30. Oldak, B. et al. Complete human day 14 post-implantation embryo models from naive ES cells. Nature 622, 562–573 (2023).

    Google Scholar 

  31. Sakai, D. & Trainor, P. A. Face off against ROS: Tcof1/Treacle safeguards neuroepithelial cells and progenitor neural crest cells from oxidative stress during craniofacial development. Dev. Growth Differ. 58, 577–585 (2016).

    Google Scholar 

  32. Dissanayake, K. et al. Individually cultured bovine embryos produce extracellular vesicles that have the potential to be used as non-invasive embryo quality markers. Theriogenology 149, 104–116 (2020).

    Google Scholar 

  33. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Google Scholar 

  34. Ma, Y. F. et al. Viscoelastic cell microenvironment: hydrogel-based strategy for recapitulating dynamic ECM mechanics. Adv. Funct. Mater. 31, 2100848 (2021).

  35. Arkenberg, M. R., Moore, D. M. & Lin, C. C. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation. Acta Biomater. 83, 83–95 (2019).

    Google Scholar 

  36. Chau, D. Y. S., Collighan, R. J., Verderio, E. A. M., Addy, V. L. & Griffin, M. The cellular response to transglutaminase-cross-linked collagen. Biomaterials 26, 6518–6529 (2005).

    Google Scholar 

  37. Cui, J. et al. Super-soft hydrogel particles with tunable elasticity in a microfluidic blood capillary model. Adv. Mater. 26, 7295–7299 (2014).

    Google Scholar 

  38. Fernandes-Cunha, G. M. et al. In situ-forming collagen hydrogel crosslinked via multi-functional PEG as a matrix therapy for corneal defects. Sci. Rep. 10, 16671 (2020).

    Google Scholar 

  39. Orban, J. M. et al. Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. Part A 68, 756–762 (2004).

    Google Scholar 

  40. Na, K. S. et al. Effect of mesenchymal stromal cells encapsulated within polyethylene glycol-collagen hydrogels formed in situ on alkali-burned corneas in an ex vivo organ culture model. Cytotherapy 23, 500–509 (2021).

    Google Scholar 

  41. Zhao, L. L. et al. A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: Its characterization and biocompatibility. Mater. Sci. Eng. C.-Mater. Biol. Appl. 68, 317–326 (2016).

    Google Scholar 

  42. Burghardt, R. C. et al. Enhanced focal adhesion assembly reflects increased mechanosensation and mechanotransduction at maternal-conceptus interface and uterine wall during ovine pregnancy. Reproduction 137, 567–582 (2009).

    Google Scholar 

  43. Sutherland, A. E., Calarco, P. G. & Damsky, C. H. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development 119, 1175–1186 (1993).

    Google Scholar 

  44. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Google Scholar 

  45. Jana, S., Cooper, A. & Zhang, M. Chitosan scaffolds with unidirectional microtubular pores for large skeletal myotube generation. Adv. Health. Mater. 2, 557–561 (2013).

    Google Scholar 

  46. Blatchley, M. R., Hall, F., Wang, S., Pruitt, H. C. & Gerecht, S. Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis. Sci. Adv. 5, eaau7518 (2019).

    Google Scholar 

  47. Chen, J. S. et al. FAK is involved in invasion and metastasis of hepatocellular carcinoma. Clin. Exp. Metastasis 27, 71–82 (2010).

    Google Scholar 

  48. Fiore, V. F. et al. Mechanics of a multilayer epithelium instruct tumour architecture and function. Nature 585, 433–439 (2020).

    Google Scholar 

  49. Qi, Y. et al. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons. Nat. Commun. 6, 8512 (2015).

    Google Scholar 

  50. Babaei, B., Davarian, A., Pryse, K. M., Elson, E. L. & Genin, G. M. Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra. J. Mech. Behav. Biomed. Mater. 55, 32–41 (2016).

  51. Tosini, M. et al. A methodological approach for interpreting and comparing the viscoelastic behaviors of soft biological tissues and hydrogels at the cell-length scale. Appl. Sci. 14, 1093 (2024).

  52. Rivron, N. C. et al. Blastocyst-like structures generated solely from stem cells. Nature 557, 106–111 (2018).

    Google Scholar 

  53. Bouhadir, K. H. et al. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 17, 945–950 (2001).

    Google Scholar 

  54. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2015).

    Google Scholar 

  55. Gao, Z. et al. Microcarriers promote the through interface movement of mouse trophoblast stem cells by regulating stiffness. Bioact. Mater. 24, 196–205 (2023).

    Google Scholar 

Download references

Acknowledgements

Q.G.’s work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0820000), National Natural Science Foundation of China (T2222029 and U21A20396), the Joint project of Chongqing Health Commission and Science and Technology Bureau (2025DBXM001), CAS Project for Young Scientists in Basic Research (YSBR-012), Beijing Institute for Stem Cell and Regenerative Medicine Project Incubation Fund (2022FH107), CAS Pioneer Hundred Talents Program (Y829F11102), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16020802), and K. C. Wong Education Foundation (GJTD-2019-06). J.G.’s work is supported by the National Natural Science Foundation of China (32400684). Z.L.G.’s work is supported by the National Natural Science Foundation of China (32501207), and China Postdoctoral Science Foundation (2025M772889). S.J.’s work is supported by Natural Science Foundation of Beijing Municipality (7254546). We are grateful to Shiwen Li and Xili Zhu of the imaging platform of CAS for their outstanding support, and Chunli Li for help with a scanning electron microscope.

Author information

Author notes
  1. These authors contributed equally: Jia Guo, Jiawei Lyu, Zili Gao, Tan Jia, Leyun Wang.

Authors and Affiliations

  1. Human Organ Physiopathology Emulation System, State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China

    Jia Guo  (郭佳), Jiawei Lyu  (吕嘉伟), Zili Gao  (高子力), Tan Jia  (贾坦), Leyun Wang  (王乐韵), Jingxi Dong  (董菁熙), Shen Ji  (季申), Wei Li  (李伟), Hongmei Wang  (王红梅), Jinglei Zhai  (翟晶磊), Leqian Yu  (于乐谦), Guihai Feng  (冯桂海), Qi Zhou  (周琪) & Qi Gu  (顾奇)

  2. Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, China

    Jia Guo  (郭佳)

  3. Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, P. R. China

    Jiawei Lyu  (吕嘉伟), Zili Gao  (高子力), Tan Jia  (贾坦), Jingxi Dong  (董菁熙), Shen Ji  (季申), Wei Li  (李伟), Hongmei Wang  (王红梅), Jinglei Zhai  (翟晶磊), Leqian Yu  (于乐谦), Guihai Feng  (冯桂海), Qi Zhou  (周琪) & Qi Gu  (顾奇)

  4. University of Chinese Academy of Sciences, Beijing, P. R. China

    Tan Jia  (贾坦), Wei Li  (李伟), Hongmei Wang  (王红梅), Leqian Yu  (于乐谦), Guihai Feng  (冯桂海), Qi Zhou  (周琪) & Qi Gu  (顾奇)

  5. Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China

    Leyun Wang  (王乐韵)

  6. Department of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, P. R. China

    Zhen Gu  (顾振)

  7. Department of Biomedical Engineering (BME), National University of Singapore, Singapore, Singapore

    Zhen Gu  (顾振)

Authors
  1. Jia Guo  (郭佳)
    View author publications

    Search author on:PubMed Google Scholar

  2. Jiawei Lyu  (吕嘉伟)
    View author publications

    Search author on:PubMed Google Scholar

  3. Zili Gao  (高子力)
    View author publications

    Search author on:PubMed Google Scholar

  4. Tan Jia  (贾坦)
    View author publications

    Search author on:PubMed Google Scholar

  5. Leyun Wang  (王乐韵)
    View author publications

    Search author on:PubMed Google Scholar

  6. Jingxi Dong  (董菁熙)
    View author publications

    Search author on:PubMed Google Scholar

  7. Zhen Gu  (顾振)
    View author publications

    Search author on:PubMed Google Scholar

  8. Shen Ji  (季申)
    View author publications

    Search author on:PubMed Google Scholar

  9. Wei Li  (李伟)
    View author publications

    Search author on:PubMed Google Scholar

  10. Hongmei Wang  (王红梅)
    View author publications

    Search author on:PubMed Google Scholar

  11. Jinglei Zhai  (翟晶磊)
    View author publications

    Search author on:PubMed Google Scholar

  12. Leqian Yu  (于乐谦)
    View author publications

    Search author on:PubMed Google Scholar

  13. Guihai Feng  (冯桂海)
    View author publications

    Search author on:PubMed Google Scholar

  14. Qi Zhou  (周琪)
    View author publications

    Search author on:PubMed Google Scholar

  15. Qi Gu  (顾奇)
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Q.G., Q.Z., G.H.F., L.Q.Y., J.L.Z., and J.G. designed the experiments. J.G., J.W.L., Z.L.G., L.Y.W., and T.J. performed the experiments and analyzed the results. J.G. wrote the manuscript. J.X.D., Z.G., W.L., H.M.W., and S.J. provided assistance in carrying out experiments and discussed results. Q.G. supervised the work and revised the manuscript. J.G., J.W.L., Z.L.G., L.Y.W., and T.J. together with J.L.Z. and Q.G. discussed results and prepared the manuscript.

Corresponding authors

Correspondence to Jinglei Zhai  (翟晶磊), Leqian Yu  (于乐谦), Guihai Feng  (冯桂海), Qi Zhou  (周琪) or Qi Gu  (顾奇).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Description of Additional Supplementary Files

Supplementary video 1

Supplementary video 2

Supplementary video 3

Supplementary video 4

Supplementary video 5

Supplementary video 6

Supplementary video 7

Supplementary video 8

Supplementary video 9

Supplementary video 10

Supplementary video 11

Supplementary video 12

Supplementary video 13

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Lyu, J., Gao, Z. et al. 3D biomimetic niche modulates embryo development in vitro. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68039-y

Download citation

  • Received: 17 September 2024

  • Accepted: 12 December 2025

  • Published: 02 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68039-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research