Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Dynamical modulation of hippocampal replay through firing rate adaptation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 January 2026

Dynamical modulation of hippocampal replay through firing rate adaptation

  • Zilong Ji  ORCID: orcid.org/0000-0001-7868-61781,2,3 na1,
  • Tianhao Chu  ORCID: orcid.org/0000-0001-9910-93611,2 na1,
  • Xingsi Dong2 na1,
  • Changmin Yu4,
  • Daniel Bush  ORCID: orcid.org/0000-0002-5097-81175,
  • Neil Burgess  ORCID: orcid.org/0000-0003-0646-65843,6 &
  • …
  • Si Wu  ORCID: orcid.org/0000-0001-9650-69351,2,7,8 

Nature Communications , Article number:  (2026) Cite this article

  • 1745 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biophysical models
  • Neural decoding

Abstract

During periods of immobility and sleep, the hippocampus generates diverse self-sustaining sequences of “replay” activity, which exhibit stationary, diffusive, and super-diffusive dynamical patterns. However, the neural mechanisms underlying this diversity in hippocampal sequential dynamics remain largely unknown. Here, we propose a unifying mechanism by showing that modulation of firing-rate adaptation strength within a continuous attractor model of place cells gives rise to these distinct forms of replay. Our model accounts for empirical data and yields several testable predictions. First, more diffusive replay sequences should positively correlate with longer theta sequences, both reflecting stronger adaptation. Second, increased neural activity combined with firing-rate adaptation should reduce the step size of decoded trajectories during replay. Third, the framework is consistent with previous work showing that replay diffusivity can vary within an animal across behavioural states that may influence adaptation (such as wake and sleep). Together, these results suggest that the diverse replay dynamics observed in the hippocampus can be understood through a simple yet powerful neural mechanism, providing insight into the computational role of replay in hippocampal-dependent cognition and its relationship to other electrophysiological phenomena.

Similar content being viewed by others

The role of experience in prioritizing hippocampal replay

Article Open access 09 December 2023

Generative emergence of non-local representations in the hippocampus

Article Open access 27 August 2025

Flexible modulation of sequence generation in the entorhinal–hippocampal system

Article 12 April 2021

Data availability

All experimental data are taken from the Collaborative Research in Computational Neuroscience (CRCNS) hc-6 dataset contributed by Loren Frank and colleagues61. They are publicly available at: https://crcns.org/data-sets/hc/hc-6. Source data are provided with this paper.

Code availability

Code for reproducing all the results in the main text is available at https://doi.org/10.5281/zenodo.17488344.

References

  1. O’Keefe, J. & Nadel, L. The Hippocampus as A Cognitive Map (Clarendon Press, 1978).

  2. Morris, R. G., Garrud, P., Rawlins, J. A. & O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Google Scholar 

  3. Johnson, A. & Redish, A. D. Neural ensembles in ca3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189 (2007).

    Google Scholar 

  4. Wikenheiser, A. M. & Redish, A. D. Hippocampal theta sequences reflect current goals. Nat. Neurosci. 18, 289–294 (2015).

    Google Scholar 

  5. Kay, K. et al. Constant sub-second cycling between representations of possible futures in the hippocampus. Cell 180, 552–567 (2020).

    Google Scholar 

  6. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11 (1957).

    Google Scholar 

  7. Olton, D. S. & Samuelson, R. J. Remembrance of places passed: spatial memory in rats. J. Exp. Psychol.: Anim. Behav. Process. 2, 97 (1976).

    Google Scholar 

  8. Steele, R. & Morris, R. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9, 118–136 (1999).

    Google Scholar 

  9. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Google Scholar 

  10. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    Google Scholar 

  11. Foster, D. J. & Wilson, M. A. Hippocampal theta sequences. Hippocampus 17, 1093–1099 (2007).

    Google Scholar 

  12. Diba, K. & Buzsáki, G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10, 1241–1242 (2007).

    Google Scholar 

  13. Karlsson, M. P. & Frank, L. M. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 12, 913–918 (2009).

    Google Scholar 

  14. Gupta, A. S., Van Der Meer, M. A., Touretzky, D. S. & Redish, A. D. Hippocampal replay is not a simple function of experience. Neuron 65, 695–705 (2010).

    Google Scholar 

  15. Dragoi, G. & Buzsáki, G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50, 145–157 (2006).

    Google Scholar 

  16. O’Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Google Scholar 

  17. Jensen, O. & Lisman, J. E. Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learn. Mem. 3, 279–287 (1996).

    Google Scholar 

  18. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Google Scholar 

  19. Drieu, C., Todorova, R. & Zugaro, M. Nested sequences of hippocampal assemblies during behavior support subsequent sleep replay. Science 362, 675–679 (2018).

    Google Scholar 

  20. Muessig, L., Lasek, M., Varsavsky, I., Cacucci, F. & Wills, T. J. Coordinated emergence of hippocampal replay and theta sequences during post-natal development. Curr. Biol. 29, 834–840 (2019).

    Google Scholar 

  21. Drieu, C. & Zugaro, M. Hippocampal sequences during exploration: mechanisms and functions. Front. Cell. Neurosci. 13, 232 (2019).

    Google Scholar 

  22. Yu, C., Ji, Z., Ormond, J., O’Keefe, J. & Burgess, N. Hippocampal theta sweeps indicate goal direction. Preprint at https://www.biorxiv.org/content/10.1101/2025.08.21.671551v1 (2025).

  23. Tang, W. et al. Goal-directed hippocampal theta sweeps during memory-guided navigation. Preprint at https://www.biorxiv.org/content/10.1101/2025.08.26.672489v1 (2025).

  24. Vollan, A. Z., Gardner, R. J., Moser, M.-B. & Moser, E. I. Left–right-alternating theta sweeps in entorhinal–hippocampal maps of space. Nature 639, 995–1005 (2025).

    Google Scholar 

  25. Ji, Z., Chu, T., Wu, S. & Burgess, N. A systems model of alternating theta sweeps via firing rate adaptation. Curr. Biol. 35, 709–722 (2025).

    Google Scholar 

  26. Widloski, J., Theurel, D. & Foster, D. J. Spontaneous alternation of place-cell sequences in the open field through spike frequency adaptation. Cell Rep. 44, 115475 (2025).

  27. Lee, A. K. & Wilson, M. A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002).

    Google Scholar 

  28. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    Google Scholar 

  29. Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469, 397–401 (2011).

    Google Scholar 

  30. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    Google Scholar 

  31. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74–79 (2013).

    Google Scholar 

  32. Yu, J. Y. et al. Distinct hippocampal-cortical memory representations for experiences associated with movement versus immobility. eLife 6, e27621 (2017).

    Google Scholar 

  33. Pfeiffer, B. E. & Foster, D. J. Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science 349, 180–183 (2015).

    Google Scholar 

  34. Stella, F., Baracskay, P., O’Neill, J. & Csicsvari, J. Hippocampal reactivation of random trajectories resembling Brownian diffusion. Neuron 102, 450–461 (2019).

    Google Scholar 

  35. Farooq, U. & Dragoi, G. Emergence of preconfigured and plastic time-compressed sequences in early postnatal development. Science 363, 168–173 (2019).

    Google Scholar 

  36. Azizi, A. H., Wiskott, L. & Cheng, S. A computational model for preplay in the hippocampus. Front. Comput. Neurosci. 7, 161 (2013).

    Google Scholar 

  37. Romani, S. & Tsodyks, M. Short-term plasticity based network model of place cells dynamics. Hippocampus 25, 94–105 (2015).

    Google Scholar 

  38. Chu, T. et al. Firing rate adaptation affords place cell theta sweeps, phase precession, and procession. eLife 12, RP87055 (2024).

    Google Scholar 

  39. Granit, R., Kernell, D. & Shortess, G. Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents. J. Physiol. 168, 911 (1963).

    Google Scholar 

  40. Lancaster, B. & Nicoll, R. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J. Physiol. 389, 187–203 (1987).

    Google Scholar 

  41. Barkai, E. & Hasselmo, M. E. Modulation of the input/output function of rat piriform cortex pyramidal cells. J. Neurophysiol. 72, 644–658 (1994).

    Google Scholar 

  42. Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).

    Google Scholar 

  43. Madison, D. & Nicoll, R. Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro. J. Physiol. 354, 319–331 (1984).

    Google Scholar 

  44. Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).

    Google Scholar 

  45. Liljenström, H. & Hasselmo, M. E. Acetylcholine and cortical oscillatory dynamics. In Computation and Neural Systems pp. 523–530 (Springer US, Boston, MA, 1993).

  46. McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M.-B. Path integration and the neural basis of the’cognitive map’. Nat. Rev. Neurosci. 7, 663–678 (2006).

    Google Scholar 

  47. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).

    Google Scholar 

  48. Tsodyks, M. Attractor neural network models of spatial maps in hippocampus. Hippocampus 9, 481–489 (1999).

    Google Scholar 

  49. Burak, Y. & Fiete, I. R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).

    Google Scholar 

  50. McNamee, D. C., Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. Flexible modulation of sequence generation in the entorhinal–hippocampal system. Nat. Neurosci. 24, 851–862 (2021).

    Google Scholar 

  51. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).

    Google Scholar 

  52. Yu, C., Behrens, T. E. & Burgess, N. Prediction and generalisation over directed actions by grid cells. In ICLR 2021-9th International Conference on Learning Representations. https://arxiv.org/abs/2006.03355 (2021).

  53. Hopfield, J. J. Neurodynamics of mental exploration. Proc. Natl. Acad. Sci. USA 107, 1648–1653 (2010).

    Google Scholar 

  54. Itskov, V., Curto, C., Pastalkova, E. & Buzsáki, G. Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus. J. Neurosci. 31, 2828–2834 (2011).

    Google Scholar 

  55. Fuhrmann, G., Markram, H. & Tsodyks, M. Spike frequency adaptation and neocortical rhythms. J. Neurophysiol. 88, 761–770 (2002).

    Google Scholar 

  56. Benda, J. & Herz, A. V. A universal model for spike-frequency adaptation. Neural Comput. 15, 2523–2564 (2003).

    Google Scholar 

  57. Mi, Y., Fung, C., Wong, K. & Wu, S. Spike frequency adaptation implements anticipative tracking in continuous attractor neural networks. Adv. Neural Inf. Process. Syst. 27 (2014).

  58. Krause, E. L. & Drugowitsch, J. A large majority of awake hippocampal sharp-wave ripples feature spatial trajectories with momentum. Neuron 110, 722–733 (2022).

    Google Scholar 

  59. Denovellis, E. L. et al. Hippocampal replay of experience at real-world speeds. eLife 10, e64505 (2021).

    Google Scholar 

  60. Bracewell, R. N. The Fourier Transform and its Applications Vol. 31999 (McGraw-Hill New York, 1986).

  61. Karlsson, M., Carr, M. & Frank, L. Simultaneous extracellular recordings from hippocampal areas CA1 and CA3 (or MEC and CA1) from rats performing an alternation task in two W-shapped tracks that are geometrically identically but visually distinct. CRCNS https://doi.org/10.6080/K0NK3BZJ (2015).

  62. Deng, X., Liu, D. F., Kay, K., Frank, L. M. & Eden, U. T. Clusterless decoding of position from multiunit activity using a marked point process filter. Neural Comput. 27, 1438–1460 (2015).

    Google Scholar 

  63. Battaglia, F. P., Sutherland, G. R. & McNaughton, B. L. Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. J. Neurosci. 24, 4541–4550 (2004).

    Google Scholar 

  64. Parra-Barrero, E., Diba, K. & Cheng, S. Neuronal sequences during theta rely on behavior-dependent spatial maps. eLife 10, e70296 (2021).

    Google Scholar 

  65. Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J. & McNaughton, B. L. Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus 6, 271–280 (1996).

    Google Scholar 

  66. Hasselmo, M. E., Schnell, E. & Barkai, E. Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J. Neurosci. 15, 5249–5262 (1995).

    Google Scholar 

  67. Saravanan, V. et al. Transition between encoding and consolidation/replay dynamics via cholinergic modulation of can current: a modeling study. Hippocampus 25, 1052–1070 (2015).

    Google Scholar 

  68. Pietras, B., Schmutz, V. & Schwalger, T. Mesoscopic description of hippocampal replay and metastability in spiking neural networks with short-term plasticity. PLoS Comput. Biol. 18, e1010809 (2022).

    Google Scholar 

  69. Singh, D., Norman, K. A. & Schapiro, A. C. A model of autonomous interactions between hippocampus and neocortex driving sleep-dependent memory consolidation. Proc. Natl. Acad. Sci. USA 119, e2123432119 (2022).

    Google Scholar 

  70. McNamee, D. C. The generative neural microdynamics of cognitive processing. Curr. Opin. Neurobiol. 85, 102855 (2024).

    Google Scholar 

  71. Schlesiger, M. I. et al. The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. Nat. Neurosci. 18, 1123–1132 (2015).

    Google Scholar 

  72. Yamamoto, J. & Tonegawa, S. Direct medial entorhinal cortex input to hippocampal CA1 is crucial for extended quiet awake replay. Neuron 96, 217–227 (2017).

    Google Scholar 

  73. Wills, T. J., Lever, C., Cacucci, F., Burgess, N. & O’Keefe, J. Attractor dynamics in the hippocampal representation of the local environment. Science 308, 873–876 (2005).

    Google Scholar 

  74. Sato, N. & Yamaguchi, Y. Memory encoding by theta phase precession in the hippocampal network. Neural Comput. 15, 2379–2397 (2003).

    Google Scholar 

  75. Van de Ven, G. M., Trouche, S., McNamara, C. G., Allen, K. & Dupret, D. Hippocampal offline reactivation consolidates recently formed cell assembly patterns during sharp wave-ripples. Neuron 92, 968–974 (2016).

    Google Scholar 

  76. Mallory, C. S., Widloski, J. & Foster, D. J. The time course and organization of hippocampal replay. Science 387, 541–548 (2025).

    Google Scholar 

  77. Dong, X. et al. Adaptation accelerating sampling-based Bayesian inference in attractor neural networks. Adv. Neural Inf. Process. Syst. 35, 21534–21547 (2022).

    Google Scholar 

  78. Benda, J., Longtin, A. & Maler, L. Spike-frequency adaptation separates transient communication signals from background oscillations. J. Neurosci. 25, 2312–2321 (2005).

    Google Scholar 

  79. Karlsson, M. P. & Frank, L. M. Network dynamics underlying the formation of sparse, informative representations in the hippocampus. J. Neurosci. 28, 14271–14281 (2008).

    Google Scholar 

  80. Kay, K. et al. A hippocampal network for spatial coding during immobility and sleep. Nature 531, 185–190 (2016).

    Google Scholar 

  81. Mizuseki, K., Diba, K., Pastalkova, E. & Buzsáki, G. Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nat. Neurosci. 14, 1174–1181 (2011).

    Google Scholar 

  82. Davidson, T. J., Kloosterman, F. & Wilson, M. A. Hippocampal replay of extended experience. Neuron 63, 497–507 (2009).

    Google Scholar 

  83. Dong, X., Chu, T., Huang, T., Ji, Z. & Wu, S. Noisy adaptation generates lévy flights in attractor neural networks. Adv. Neural Inf. Process. Syst. 34, 16791–16804 (2021).

    Google Scholar 

  84. Fung, C. A., Wong, K. M. & Wu, S. Dynamics of neural networks with continuous attractors. Europhys. Lett. 84, 18002 (2008).

    Google Scholar 

  85. Fung, C. A., Wong, K. M. & Wu, S. A moving bump in a continuous manifold: a comprehensive study of the tracking dynamics of continuous attractor neural networks. Neural Comput. 22, 752–792 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank Eric Denovellis for sharing the code of the state space decoder. We thank Loren Frank and colleagues for making the experimental data available online. We thank Kenneth Kay, Thomas Wills, Mattias Horan, Wentao Qiu, and Wenhao Zhang for valuable discussions. This work was supported by: a National Key Research and Development Program of China (2024YFF1206500, S.W.), a Wellcome Principal Research Fellowship (NB), a UKRI Frontier Research Grant (EP/X023060/1, D.B.), and an International Postdoctoral Exchange Fellowship Program (PC2021005, Z.J.).

Author information

Author notes
  1. These authors contributed equally: Zilong Ji, Tianhao Chu, Xingsi Dong.

Authors and Affiliations

  1. School of Psychological and Cognitive Sciences, Peking University, Beijing, China

    Zilong Ji, Tianhao Chu & Si Wu

  2. Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China

    Zilong Ji, Tianhao Chu, Xingsi Dong & Si Wu

  3. Institute of Cognitive Neuroscience, University College London, London, UK

    Zilong Ji & Neil Burgess

  4. Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK

    Changmin Yu

  5. Department of Neuroscience, Physiology and Pharmacology, University of College London, London, UK

    Daniel Bush

  6. UCL Queen Square Institute of Neurology, University College London, London, UK

    Neil Burgess

  7. PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China

    Si Wu

  8. Center of Quantitative Biology, Peking University, Beijing, China

    Si Wu

Authors
  1. Zilong Ji
    View author publications

    Search author on:PubMed Google Scholar

  2. Tianhao Chu
    View author publications

    Search author on:PubMed Google Scholar

  3. Xingsi Dong
    View author publications

    Search author on:PubMed Google Scholar

  4. Changmin Yu
    View author publications

    Search author on:PubMed Google Scholar

  5. Daniel Bush
    View author publications

    Search author on:PubMed Google Scholar

  6. Neil Burgess
    View author publications

    Search author on:PubMed Google Scholar

  7. Si Wu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Z.J., T.C., X.D., N.B., and S.W. conceptualised and designed the research. Z.J. analysed the experimental data with the input from N.B. Z.J., T.C., X.D., and C.Y. performed theoretical analysis and simulations. D.B. and N.B. supervised the analysis of experimental data, and S.W. supervised the analysis of theoretical modelling. Z.J., N.B., and S.W. wrote the manuscript with the input from all the other authors.

Corresponding authors

Correspondence to Neil Burgess or Si Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Z., Chu, T., Dong, X. et al. Dynamical modulation of hippocampal replay through firing rate adaptation. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68042-3

Download citation

  • Received: 15 August 2024

  • Accepted: 15 December 2025

  • Published: 20 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68042-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing