Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Two-dimensional magnetic tunnel p-n junctions for low-power electronics
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 December 2025

Two-dimensional magnetic tunnel p-n junctions for low-power electronics

  • Wenkai Zhu  ORCID: orcid.org/0000-0001-6770-55481,2,
  • Ziao Wang1,2,
  • Tiangui Hu2,3,
  • Zakhar R. Kudrynskyi  ORCID: orcid.org/0000-0003-3983-93164,
  • Tong Zhou5,6,
  • Zakhar D. Kovalyuk7,
  • Ce Hu1,2,
  • Hailong Lin1,2,
  • Xiaodong Li2,3,
  • Yongcheng Deng  ORCID: orcid.org/0000-0003-4047-53881,2,
  • Quanshan Lv1,2,
  • Lixia Zhao  ORCID: orcid.org/0000-0002-0466-247X1,3,
  • Amalia Patanè  ORCID: orcid.org/0000-0003-3015-94968,
  • Igor Žutić  ORCID: orcid.org/0000-0003-2485-226X5,
  • Houzhi Zheng1,2 &
  • …
  • Kaiyou Wang  ORCID: orcid.org/0000-0002-6017-75751,2 

Nature Communications , Article number:  (2025) Cite this article

  • 3913 Accesses

  • 1 Citations

  • 25 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Magnetic properties and materials
  • Spintronics

Abstract

For decades, semiconductors and their heterostructures have underpinned both fundamental and applied research across all areas of electronics. Two-dimensional, 2D (atomically thin) semiconductors have now the potential to push further the miniaturization of electronic components, enabling the development of more efficient electronics. Here, we report on a large tunneling magnetoresistance of 1100% at a bias current of 1 nA and a giant anomalous zero-bias spin voltage effect in magnetic tunnel junctions based on 2D materials. The generation, manipulation and detection of electron spin across a nanometer-thick magnetic tunnel junction do not require any applied bias. The large zero-bias spin voltage signal exceeds 30,000%, which is far greater than the highest magnetoresistance signals reported to date. This non-equilibrium spin-engine state arises from the asymmetric diffusion of spin-up/spin-down electrons across the junction. It is driven by the built-in electric field of the junction and occurs under continuous energy exchange of the junction with the environment. Our findings reveal unexplored opportunities to transform and amplify spin information for low-power electronics.

Similar content being viewed by others

2D Magnetic heterostructures: spintronics and quantum future

Article Open access 30 May 2024

Tuning of spin-transfer torque in VSe2-based vdW magnetic tunnel junctions by electrode polytypes

Article Open access 14 May 2025

Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction

Article 18 January 2023

Data availability

The data that support the findings of this study are available within the article and the Supplementary Information or available from the corresponding author upon reasonable request. All data generated in this study are provided in the Supplementary Information/Source Data file. Source data are provided with this paper.

Code availability

The codes that support the theoretical part of this study are also available from the corresponding author upon reasonable request.

References

  1. Alferov, Z. I. Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys. 73, 767–782 (2001).

    Google Scholar 

  2. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Google Scholar 

  3. Maekawa, S. Concepts in Spin Electronics. (Oxford University Press, 2006).

  4. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Google Scholar 

  5. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    Google Scholar 

  6. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Google Scholar 

  7. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    Google Scholar 

  8. Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).

    Google Scholar 

  9. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Google Scholar 

  10. Ajayan, P., Kim, P. & Banerjee, K. Two-dimensional van der Waals materials. Phys. Today 69, 38–44 (2016).

    Google Scholar 

  11. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Google Scholar 

  12. Zhu, W. & Wang, K. Aharonov-Anandan phases in a van der Waals antiferromagnet CrPS4. Sci. Bull. 70, 1001–1003 (2025).

    Google Scholar 

  13. Zega, T. J. et al. Determination of interface atomic structure and its impact on spin transport using Z-contrast microscopy and density-functional theory. Phys. Rev. Lett. 96, 196101 (2006).

    Google Scholar 

  14. Chuang, S. L. Physics of Optoelectronic Devices. 2nd edn, (Wiley, 2009).

  15. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Google Scholar 

  16. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    Google Scholar 

  17. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Google Scholar 

  18. Jiang, X. et al. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Appl. Phys. Rev. 8, 031305 (2021).

    Google Scholar 

  19. Cardoso, C., Soriano, D., García-Martínez, N. A. & Fernández-Rossier, J. Van der Waals spin valves. Phys. Rev. Lett. 121, 067701 (2018).

    Google Scholar 

  20. Zhu, W. et al. Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Nat. Commun. 14, 5371 (2023).

    Google Scholar 

  21. Zhu, W. et al. Large tunneling magnetoresistance in van der Waals ferromagnet/semiconductor heterojunctions. Adv. Mater. 33, 2104658 (2021).

    Google Scholar 

  22. Hu, C. et al. From two- to multi-state vertical spin valves without spacer layer based on Fe3GeTe2 van der Waals homo-junctions. Sci. Bull. 65, 1072–1077 (2020).

    Google Scholar 

  23. Ramos, R. & Saitoh, E. Spin Caloritronics, in Spintronics Handbook: Spin Transport and Magnetism. 2 edn, Vol. 3 269-299 (CRC Press, Boca Raton, FL, 2019).

  24. Žutić, I., Fabian, J. & Das Sarma, S. Spin injection through the depletion layer: A theory of spin-polarized p-n junctions and solar cells. Phys. Rev. B 64, 121201 (2001).

    Google Scholar 

  25. Madelung, O. R., U.; Schulz, M. Non-Tetrahedrally Bonded Elements and Binary Compounds I. (Springer, 1998).

  26. Wang, Z. et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303–4308 (2018).

    Google Scholar 

  27. Miao, G.-X., Xiao, G. & Gupta, A. Anomalous bias dependence in magnetic tunnel junctions based on half-metallic CrO2 with heteroepitaxial SnO2 tunnel barrier. Europhys. Lett. 87, 47006 (2009).

    Google Scholar 

  28. van Son, P. C., van Kempen, H. & Wyder, P. Boundary resistance of the ferromagnetic-nonferromagnetic metal interface. Phys. Rev. Lett. 58, 2271–2273 (1987).

    Google Scholar 

  29. Wunderlich, J. et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga,Mn)As single-electron transistor. Phys. Rev. Lett. 97, 077201 (2006).

    Google Scholar 

  30. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Google Scholar 

  31. Katcko, K. et al. Spin-driven electrical power generation at room temperature. Commun. Phys. 2, 116 (2019).

    Google Scholar 

  32. Chowrira, B. et al. Quantum advantage in a molecular spintronic engine that harvests thermal fluctuation energy. Adv. Mater. 34, 2206688 (2022).

  33. Li, Y., Edmonds, K. W., Liu, X., Zheng, H. & Wang, K. Manipulation of magnetization by spin–orbit torque. Adv. Quantum Technol. 2, 1800052 (2019).

    Google Scholar 

  34. Dainone, P. A. et al. Controlling the helicity of light by electrical magnetization switching. Nature 627, 783–788 (2024).

    Google Scholar 

  35. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    Google Scholar 

  36. Desjardins, M. M. et al. Synthetic spin–orbit interaction for Majorana devices. Nat. Mater. 18, 1060–1064 (2019).

    Google Scholar 

  37. Amundsen, M., Linder, J., Robinson, J. W. A., Žutić, I. & Banerjee, N. Colloquium: Spin-orbit effects in superconducting hybrid structures. Rev. Mod. Phys. 96, 021003 (2024).

    Google Scholar 

  38. Zhou, T., Mohanta, N., Han, J. E., Matos-Abiague, A. & Žutić, I. Tunable magnetic textures in spin valves: From spintronics to Majorana bound states. Phys. Rev. B 99, 134505 (2019).

    Google Scholar 

  39. Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).

    Google Scholar 

  40. Sukegawa, H. et al. Tunnel magnetoresistance with improved bias voltage dependence in lattice-matched Fe/spinel MgAl2O4/Fe(001) junctions. Appl. Phys. Lett. 96, 212505 (2010).

    Google Scholar 

  41. Asshoff, P. U. et al. Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene. 2D Mater. 4, 031004 (2017).

    Google Scholar 

  42. Wang, W. et al. Spin-valve effect in NiFe/MoS2/NiFe junctions. Nano Lett. 15, 5261–5267 (2015).

    Google Scholar 

  43. Piquemal-Banci, M. et al. Insulator-to-metallic spin-filtering in 2D-magnetic tunnel junctions based on hexagonal boron nitride. ACS Nano 12, 4712–4718 (2018).

    Google Scholar 

  44. Min, K.-H. et al. Tunable spin injection and detection across a van der Waals interface. Nat. Mater. 21, 1144–1149 (2022).

    Google Scholar 

  45. Zhu, S. et al. Voltage tunable sign inversion of magnetoresistance in van der Waals Fe3GeTe2/MoSe2/Fe3GeTe2 tunnel junctions. Appl. Phys. Lett. 124, 222401 (2024).

    Google Scholar 

  46. Lin, H. et al. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces 12, 43921–43926 (2020).

    Google Scholar 

  47. Pan, Z.-C. et al. Room-temperature orbit-transfer torque enabling van der Waals magnetoresistive memories. Sci. Bull. 68, 2743–2749 (2023).

    Google Scholar 

  48. Zhu, W. et al. Large room-temperature magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Chin. Phys. Lett. 39, 128501 (2022).

    Google Scholar 

  49. Jin, W. et al. Room-temperature and tunable tunneling magnetoresistance in Fe3GaTe2-based 2D van der Waals heterojunctions. ACS Appl. Mater. Interfaces 15, 36519–36526 (2023).

    Google Scholar 

  50. Jin, W. et al. Tunable high-temperature tunneling magnetoresistance in all-van der Waals antiferromagnet/semiconductor/ferromagnet junctions. Adv. Funct. Mater. 34, 2402091 (2024).

    Google Scholar 

Download references

Acknowledgements

K.W. is grateful to Prof. H. Ohno for the useful discussion. This work was supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1405100), the National Natural Science Foundation of China (Grant Nos. 12241405, 12174384 and 12404146). A.P. acknowledges the European Union’s Horizon 2020 research and innovation programme Graphene Flagship Core 3. T.Z. and I.Ž. were supported by U.S. DOE, Office of Science BES, Award No. DE-SC0004890 (DFT calculations), I.Ž. was supported by U.S. National Science Foundation, Award No. ECCS-2512491 (modeling p-n junctions).

Author information

Authors and Affiliations

  1. State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China

    Wenkai Zhu, Ziao Wang, Ce Hu, Hailong Lin, Yongcheng Deng, Quanshan Lv, Lixia Zhao, Houzhi Zheng & Kaiyou Wang

  2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China

    Wenkai Zhu, Ziao Wang, Tiangui Hu, Ce Hu, Hailong Lin, Xiaodong Li, Yongcheng Deng, Quanshan Lv, Houzhi Zheng & Kaiyou Wang

  3. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, TianGong University, Tianjin, China

    Tiangui Hu, Xiaodong Li & Lixia Zhao

  4. Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK

    Zakhar R. Kudrynskyi

  5. Department of Physics, University at Buffalo, SUNY, Buffalo, NY, USA

    Tong Zhou & Igor Žutić

  6. Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, China

    Tong Zhou

  7. Frantsevich Institute for Problems of Materials Science, The National Academy of Sciences of Ukraine, Chernivtsi Branch, Chernivtsi, Ukraine

    Zakhar D. Kovalyuk

  8. School of Physics and Astronomy, University of Nottingham, Nottingham, UK

    Amalia Patanè

Authors
  1. Wenkai Zhu
    View author publications

    Search author on:PubMed Google Scholar

  2. Ziao Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Tiangui Hu
    View author publications

    Search author on:PubMed Google Scholar

  4. Zakhar R. Kudrynskyi
    View author publications

    Search author on:PubMed Google Scholar

  5. Tong Zhou
    View author publications

    Search author on:PubMed Google Scholar

  6. Zakhar D. Kovalyuk
    View author publications

    Search author on:PubMed Google Scholar

  7. Ce Hu
    View author publications

    Search author on:PubMed Google Scholar

  8. Hailong Lin
    View author publications

    Search author on:PubMed Google Scholar

  9. Xiaodong Li
    View author publications

    Search author on:PubMed Google Scholar

  10. Yongcheng Deng
    View author publications

    Search author on:PubMed Google Scholar

  11. Quanshan Lv
    View author publications

    Search author on:PubMed Google Scholar

  12. Lixia Zhao
    View author publications

    Search author on:PubMed Google Scholar

  13. Amalia Patanè
    View author publications

    Search author on:PubMed Google Scholar

  14. Igor Žutić
    View author publications

    Search author on:PubMed Google Scholar

  15. Houzhi Zheng
    View author publications

    Search author on:PubMed Google Scholar

  16. Kaiyou Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.W. conceived the work. W.Z. fabricated the devices, W.Z., Z.W., T.H., C.H., H.L., X.L., Y.D. and Q.L. performed the experiments. W.Z., C.H. and K.W. analyzed the data. Z.W., Y.D., I.Ž. and K.W. carried out the modeling. T.Z. and I.Ž. performed DFT calculations. Z.R.K., Z.D.K. and A.P. provided the InSe bulk crystals and conducted the preliminary studies of InSe. W.Z., Z.W., C.H., L.Z., A.P., I.Ž., H.Z. and K.W wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kaiyou Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review File

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Wang, Z., Hu, T. et al. Two-dimensional magnetic tunnel p-n junctions for low-power electronics. Nat Commun (2025). https://doi.org/10.1038/s41467-025-68043-2

Download citation

  • Received: 22 June 2025

  • Accepted: 16 December 2025

  • Published: 30 December 2025

  • DOI: https://doi.org/10.1038/s41467-025-68043-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing