Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Critical thresholds for co-benefits of carbon accumulation and biodiversity conservation under global nitrogen enrichment
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Critical thresholds for co-benefits of carbon accumulation and biodiversity conservation under global nitrogen enrichment

  • Haibo Pan1,
  • Yi Hui1,
  • Wenyuan Wu1,
  • Songyang Liu1,
  • Gehong Wei1 &
  • …
  • Shuo Jiao  ORCID: orcid.org/0000-0001-6391-73081,2 

Nature Communications , Article number:  (2026) Cite this article

  • 2926 Accesses

  • 10 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biodiversity
  • Carbon cycle
  • Climate-change mitigation

Abstract

Global nitrogen (N) enrichment promotes soil organic carbon (SOC) accumulation but often causes biodiversity loss in plants and soil microbes, creating a central challenge for achieving co-benefits of carbon accumulation and biodiversity conservation. The extent to which biodiversity contributes to SOC accumulation, and how these trade-offs can be mitigated under N enrichment remains poorly understood. Here, we conduct a global meta-analysis of N enrichment experiments encompassing 2141 observations from 275 studies to evaluate the contributions of plant, bacterial, and fungal diversity to SOC accumulation and to determine associated ecological thresholds. Our findings indicate that biodiversity, especially in plant communities, is the most important factor for SOC accumulation. We identify three distinct N thresholds characterized by different ecological responses: biodiversity loss accelerates at 50 kg N ha⁻¹ yr⁻¹, soil degradation persists at 200 kg N ha⁻¹ yr⁻¹, and SOC accumulation declines beyond this point. Given that the promoting effects of bacterial, fungal, and plant diversity on SOC diminish or even reverse at 50, 67, and 74 kg N ha⁻¹ yr⁻¹, respectively, we suggest limiting fertilization to around 50 kg N ha⁻¹ yr⁻¹, as the trade-off between biodiversity loss and SOC accumulation under N enrichment is potentially minimized.

Similar content being viewed by others

Trajectories and thresholds of multitrophic diversities and multiple functions in response to nitrogen enrichment

Article Open access 10 December 2025

Effects of biochar and nitrogen fertilizer on microbial communities, CO2 emissions, and organic carbon content in soil

Article Open access 21 March 2025

Meta-analysis shows that planting nitrogen-fixing species increases soil organic carbon stock

Article 19 September 2025

Data availability

All data generated and analyzed in this study have been deposited in the figshare repository (https://doi.org/10.6084/m9.figshare.30646841). Supplementary Data 1 contains the full citation information for all primary studies included in the meta-analysis. Source data are provided with this paper.

Code availability

The main R code used in this study is available at the figshare repository (https://doi.org/10.6084/m9.figshare.30646841).

References

  1. Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427 (2020).

    Google Scholar 

  2. Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).

    Google Scholar 

  3. Ling, J. et al. Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide. Nat. Commun. 16, 3009 (2025).

    Google Scholar 

  4. Yang, X. et al. Nitrogen addition promotes soil carbon accumulation globally. Sci. China Life Sci. 68, 284–293 (2025).

    Google Scholar 

  5. Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    Google Scholar 

  6. Hiis, E. G. et al. Unlocking bacterial potential to reduce farmland N2O emissions. Nature 630, 421–428 (2024).

    Google Scholar 

  7. Ye, C. et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls. Ecol. Lett. 21, 1162–1173 (2018).

    Google Scholar 

  8. Lu, X. et al. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: a meta-analysis. Glob. Change Biol. 27, 2780–2792 (2021).

    Google Scholar 

  9. Tang, B., Rocci, K. S., Lehmann, A. & Rillig, M. C. Nitrogen increases soil organic carbon accrual and alters its functionality. Glob. Change Biol. 29, 1971–1983 (2023).

    Google Scholar 

  10. Feng, X. et al. Nitrogen input enhances microbial carbon use efficiency by altering plant-microbe-mineral interactions. Glob. Change Biol. 28, 4845–4860 (2022).

    Google Scholar 

  11. Neff, J. C. et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419, 915–917 (2002).

    Google Scholar 

  12. Mack, M. C., Schuur, E. A., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004).

    Google Scholar 

  13. Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).

    Google Scholar 

  14. Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

    Google Scholar 

  15. Li, Y. et al. Microbial diversity losses constrain the capacity of soils to mitigate climate change. Glob. Change Biol. 30, e17601 (2024).

    Google Scholar 

  16. Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006).

    Google Scholar 

  17. Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    Google Scholar 

  18. Angst, S., Angst, G., Mueller, K. E., Lange, M. & Eisenhauer, N. Un(der)explored links between plant diversity and particulate and mineral-associated organic matter in soil. Nat. Commun. 16, 5548 (2025).

    Google Scholar 

  19. Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).

    Google Scholar 

  20. Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).

    Google Scholar 

  21. Domeignoz-Horta, L. A. et al. Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun. 11, 3684 (2020).

    Google Scholar 

  22. Yang, Y. et al. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: a global meta-analysis. Glob. Change Biol. 28, 6446–6461 (2022).

    Google Scholar 

  23. Simkin, S. M. et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl. Acad. Sci. USA 113, 4086–4091 (2016).

    Google Scholar 

  24. Namuhan et al. Mechanisms of biodiversity loss under nitrogen enrichment: unveiling a shift from light competition to cation toxicity. New Phytol. 243, 1966–1979 (2024).

    Google Scholar 

  25. Tian, Q. et al. An integrated belowground trait-based understanding of nitrogen-driven plant diversity loss. Glob. Change Biol. 28, 3651–3664 (2022).

    Google Scholar 

  26. Band, N., Kadmon, R., Mandel, M. & DeMalach, N. Assessing the roles of nitrogen, biomass, and niche dimensionality as drivers of species loss in grassland communities. Proc. Natl. Acad. Sci. USA 119, e2112010119 (2022).

    Google Scholar 

  27. Wang, X. D. et al. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness. Soil Biol. Biochem. 179, 108982 (2023).

    Google Scholar 

  28. Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017 (2012).

    Google Scholar 

  29. Yu, Q. et al. Decoupled responses of plants and soil biota to global change across the world’s land ecosystems. Nat. Commun. 15, 10369 (2024).

    Google Scholar 

  30. Loreau, M. & Hector, A. J. N. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    Google Scholar 

  31. Hu, J., Huang, C., Zhou, S. & Kuzyakov, Y. Nitrogen addition to soil affects microbial carbon use efficiency: meta-analysis of similarities and differences in 13C and 18O approaches. Glob. Change Biol. 28, 4977–4988 (2022).

    Google Scholar 

  32. Liu, W., Qiao, C., Yang, S., Bai, W. & Liu, L. Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition. Geoderma 332, 37–44 (2018).

    Google Scholar 

  33. Weiskopf, S. R. et al. Biodiversity loss reduces global terrestrial carbon storage. Nat. Commun. 15, 4354 (2024).

    Google Scholar 

  34. Liu, H. Y., Huang, N., Zhao, C. M. & Li, J. H. Responses of carbon cycling and soil organic carbon content to nitrogen addition in grasslands globally. Soil Biol. Biochem. 186, 109164 (2023).

    Google Scholar 

  35. Schuldt, A. et al. Carbon-biodiversity relationships in a highly diverse subtropical forest. Glob. Change Biol. 29, 5321–5333 (2023).

    Google Scholar 

  36. Zhu, L. et al. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Sci. Adv. 7, eabe4261 (2021).

    Google Scholar 

  37. Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. T. R. Soc. B 375, 20190128 (2020).

    Google Scholar 

  38. Fornara, D. A. & Tilman, D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology 93, 2030–2036 (2012).

    Google Scholar 

  39. Zhou, T., Wang, C. K. & Zhou, Z. H. Nitrogen availability regulates tree mixture effects on soil organic carbon in temperate forests: insights from a meta-analysis and long-term experiment. Glob. Ecol. Biogeogr. 34, e70073 (2025).

    Google Scholar 

  40. Shi, T. S. et al. A global meta-analysis on the effects of organic and inorganic fertilization on grasslands and croplands. Nat. Commun. 15, 3411 (2024).

    Google Scholar 

  41. Xia, L. L. et al. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Change Biol. 24, 5919–5932 (2018).

    Google Scholar 

  42. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Google Scholar 

  43. Zhang, J. et al. Water availability creates global thresholds in multidimensional soil biodiversity and functions. Nat. Ecol. Evol. 7, 1002–1011 (2023).

    Google Scholar 

  44. Pan, H. et al. Aridity threshold induces abrupt change of soil abundant and rare bacterial biogeography in dryland ecosystems. mSystems 7, e0130921 (2022).

    Google Scholar 

  45. Egidi, E., Coleine, C., Delgado-Baquerizo, M. & Singh, B. K. Assessing critical thresholds in terrestrial microbiomes. Nat. Microbiol. 8, 2230–2233 (2023).

    Google Scholar 

  46. Frantzeskakis, L. et al. Rapid evolution in plant–microbe interactions–a molecular genomics perspective. New Phytol. 225, 1134–1142 (2020).

    Google Scholar 

  47. Wang, H. et al. Divergent phenological responses of soil microorganisms and plants to climate warming. Nat. Geosci. 18, 753–760 (2025).

    Google Scholar 

  48. Hodge, A., Robinson, D. & Fitter, A. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 5, 304–308 (2000).

    Google Scholar 

  49. Lavallee, J. M., Soong, J. L. & Cotrufo, M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 26, 261–273 (2020).

    Google Scholar 

  50. Midolo, G. et al. Impacts of nitrogen addition on plant species richness and abundance: a global meta-analysis. Glob. Ecol. Biogeogr. 28, 398–413 (2019).

    Google Scholar 

  51. Han, Y. F., Feng, J. G., Han, M. G. & Zhu, B. Responses of arbuscular mycorrhizal fungi to nitrogen addition: a meta-analysis. Glob. Change Biol. 26, 7229–7241 (2020).

    Google Scholar 

  52. Ma, X. C. et al. Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. New Phytol. 229, 2957–2969 (2021).

    Google Scholar 

  53. Morrison, E. W. et al. Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecol. 23, 48–57 (2016).

    Google Scholar 

  54. Branco, S., Schauster, A., Liao, H. L. & Ruytinx, J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. New Phytol. 235, 2158–2175 (2022).

    Google Scholar 

  55. Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Mooney, H. A. & Field, C. B. Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc. Natl. Acad. Sci. USA 100, 7650–7654 (2003).

    Google Scholar 

  56. Wang, C. Q. & Kuzyakov, Y. Mechanisms and implications of bacterial-fungal competition for soil resources. ISME J. 18, wrae073 (2024).

    Google Scholar 

  57. Hu, Z. et al. Nutrient-induced acidification modulates soil biodiversity-function relationships. Nat. Commun. 15, 2858 (2024).

    Google Scholar 

  58. He, Y. C. et al. Water controls the divergent responses of terrestrial plant photosynthesis under nitrogen enrichment. J. Ecol. 112, 2638–2651 (2024).

    Google Scholar 

  59. Bai, Y. F. & Cotrufo, M. F. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 377, 603–608 (2022).

    Google Scholar 

  60. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Google Scholar 

  61. Tian, D. H., Wang, H., Sun, J. & Niu, S. L. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environ. Res. Lett. 11, 024012 (2016).

    Google Scholar 

  62. Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. USA 112, 15684–15689 (2015).

    Google Scholar 

  63. Carpenter, D. N., Bockheim, J. G. & Reich, P. F. Soils of temperate rainforests of the North American Pacific Coast. Geoderma 230, 250–264 (2014).

    Google Scholar 

  64. Machmuller, M. B. et al. Arctic soil carbon trajectories shaped by plant-microbe interactions. Nat. Clim. Change 14, 1178–1185 (2024).

    Google Scholar 

  65. Xia, J. & Wan, S. Global response patterns of terrestrial plant species to nitrogen addition. New Phytol. 179, 428–439 (2008).

    Google Scholar 

  66. Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochem. Cycles 33, 100–107 (2019).

    Google Scholar 

  67. He, C., Ruan, Y. & Jia, Z. Effects of nitrogen addition on soil microbial biomass: a meta-analysis. Agriculture 14, 1616 (2024).

    Google Scholar 

  68. Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).

    Google Scholar 

  69. Forstner, S. J. et al. Vertical redistribution of soil organic carbon pools after twenty years of nitrogen addition in two temperate coniferous forests. Ecosystems 22, 452–452 (2019).

    Google Scholar 

  70. Tian, J. et al. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Glob. Change Biol. 25, 3267–3281 (2019).

    Google Scholar 

  71. Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).

    Google Scholar 

  72. Meng, C. et al. Global soil acidification impacts on belowground processes. Environ. Res. Lett. 14, 074003 (2019).

    Google Scholar 

  73. Kong, W. et al. Climate and soil pH modulate global negative effects of nitrogen enrichment on soil nematodes. Soil Biol. Biochem. 208, 109860 (2025).

    Google Scholar 

  74. Domeignoz-Horta, L. A. et al. Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils. Nat. Commun. 15, 8065 (2024).

    Google Scholar 

  75. Strassburg, B. B. et al. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv. Lett. 3, 98–105 (2010).

    Google Scholar 

  76. Thomas, C. D. et al. Reconciling biodiversity and carbon conservation. Ecol. Lett. 16, 39–47 (2013).

    Google Scholar 

  77. Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. Eur. J. Soil Sci. 62, 105–116 (2010).

    Google Scholar 

  78. Zhao, M. et al. Decoupled responses of above- and below-ground beta-diversity to nitrogen enrichment in a typical steppe. Ecol. Lett. 27, e14339 (2024).

    Google Scholar 

  79. Genre, A., Lanfranco, L., Perotto, S. & Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 18, 649–660 (2020).

    Google Scholar 

  80. Forsmark, B. et al. Anthropogenic nitrogen enrichment increased the efficiency of belowground biomass production in a boreal forest. Soil Biol. Biochem. 155, 108154 (2021).

    Google Scholar 

  81. Hyvönen, R. et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89, 121–137 (2008).

    Google Scholar 

  82. Allison, S. D. & Martiny, J. B. Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519 (2008).

    Google Scholar 

  83. Li, T. et al. Mycorrhizal allies: synergizing forest carbon and multifunctional restoration. Trends Ecol. Evol. 40, 983–994 (2025).

    Google Scholar 

  84. Auer, L. et al. Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems. New Phytol. 242, 1676–1690 (2024).

    Google Scholar 

  85. Kakouridis, A. et al. Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral-associated organic matter. New Phytol. 242, 1661–1675 (2024).

    Google Scholar 

  86. Wu, S. L. et al. Soil organic matter dynamics mediated by arbuscular mycorrhizal fungi - an updated conceptual framework. New Phytol. 242, 1417–1425 (2024).

    Google Scholar 

  87. Tuo, B. et al. Meta-analysis reveals that vertebrates enhance plant litter decomposition at the global scale. Nat. Ecol. Evol. 8, 411–422 (2024).

    Google Scholar 

  88. Takkouche, B. & Norman, G. J. E. PRISMA statement. 22, 128 (2011).

  89. Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat. Ecol. Evol. 7, 113–126 (2023).

    Google Scholar 

  90. Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    Google Scholar 

  91. Liu, S. W. et al. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy 8, 392–406 (2016).

    Google Scholar 

  92. Liu, T. et al. Forest canopy maintains the soil community composition under elevated nitrogen deposition. Soil Biol. Biochem. 143, 107733 (2020).

  93. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Google Scholar 

  94. Sáez-Sandino, T. et al. The soil microbiome governs the response of microbial respiration to warming across the globe. Nat. Clim. Change 13, 1382–1387 (2023).

    Google Scholar 

  95. Benito, B. M. spatialRF: Easy Spatial Regression with Random Forest Measurement (R package version,2021).

  96. Pelletier, T. A., Carstens, B. C., Tank, D. C., Sullivan, J. & Espíndola, A. Predicting plant conservation priorities on a global scale. Proc. Natl. Acad. Sci. USA 115, 13027–13032 (2018).

    Google Scholar 

  97. Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).

    Google Scholar 

  98. Lee, C. H., Cook, S., Lee, J. S. & Han, B. Comparison of two meta-analysis methods: inverse-variance-weighted average and weighted sum of Z-scores. Genom. Inform. 14, 173–180 (2016).

    Google Scholar 

  99. Fong, Y. Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinform. 18, 454 (2017).

  100. Hastie, T. gam: Generalized additive models. R package version 1.20 (2020).

  101. Hu, W. et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nat. Commun. 12, 5350 (2021).

    Google Scholar 

  102. Silva, J. F. Jr. et al. Multivariate split moving windows and magnetic susceptibility for locating soil boundaries of Sao Paulo, Brazil. Geoderma Reg. 26, e00418 (2021).

    Google Scholar 

  103. Jiao, S., Lu, Y. H. & Wei, G. H. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob. Change Biol. 28, 140–153 (2022).

    Google Scholar 

  104. Cai, L. et al. Global models and predictions of plant diversity based on advanced machine learning techniques. New Phytol. 237, 1432–1445 (2023).

    Google Scholar 

  105. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  106. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014).

    Google Scholar 

  107. Childs, C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser 3235, 32–35 (2004).

    Google Scholar 

  108. Lawhead, J. Learning Geospatial Analysis with Python (Packt Publishing Ltd, 2013).

  109. Egger, M. atthias, Martin Schneider, G. D. S. & Minder, C. hristoph Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 316, 629–634 (1997).

    Google Scholar 

  110. Rosenberg, M. S. The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468 (2005).

    Google Scholar 

  111. Wong, T. T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 48, 2839–2846 (2015).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant number: 2021YFD1900500; S.J.), National Science Foundation of China (grant number: 42477129; S.J.), and National Science Foundation for Excellent Young Scholars of China (grant number: 42122050; S.J.).

Author information

Authors and Affiliations

  1. State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China

    Haibo Pan, Yi Hui, Wenyuan Wu, Songyang Liu, Gehong Wei & Shuo Jiao

  2. College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, P. R. China

    Shuo Jiao

Authors
  1. Haibo Pan
    View author publications

    Search author on:PubMed Google Scholar

  2. Yi Hui
    View author publications

    Search author on:PubMed Google Scholar

  3. Wenyuan Wu
    View author publications

    Search author on:PubMed Google Scholar

  4. Songyang Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Gehong Wei
    View author publications

    Search author on:PubMed Google Scholar

  6. Shuo Jiao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.J. and H.P. conceived the ideas and designed the methodology. H.P., Y.H., W.W., and S.L. contributed to the literature inclusion and data collection. H.P. performed the analyses and wrote the original draft. S.J. and G.W. reviewed the paper before submission.

Corresponding authors

Correspondence to Gehong Wei or Shuo Jiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Information

Supplementary Data 1

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Hui, Y., Wu, W. et al. Critical thresholds for co-benefits of carbon accumulation and biodiversity conservation under global nitrogen enrichment. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68090-9

Download citation

  • Received: 08 January 2025

  • Accepted: 16 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68090-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing