Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
A high-throughput, flow cytometry approach to measure phase behavior and exchange in biomolecular condensates
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 15 January 2026

A high-throughput, flow cytometry approach to measure phase behavior and exchange in biomolecular condensates

  • Yuchen He1 na1,
  • George M. Ongwae1 na1,
  • Anupam Mondal  ORCID: orcid.org/0000-0002-8436-56182,
  • Joel A. Moses  ORCID: orcid.org/0000-0002-1382-47921,
  • Jeetain Mittal  ORCID: orcid.org/0000-0002-9725-64022,3,4 &
  • …
  • Marcos M. Pires  ORCID: orcid.org/0000-0002-5676-07251,5 

Nature Communications , Article number:  (2026) Cite this article

  • 4162 Accesses

  • 6 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biophysics
  • Molecular biology

Abstract

Biomolecular condensates are essential for cellular organization, yet their formation dynamics and molecular content exchange properties remain poorly understood. Here we show that flow cytometry provides a high-throughput, solution-based platform for analyzing condensate behavior at the single-droplet level. Using self-interacting NPM1 condensates as a model, we demonstrate that this approach quantifies phase behavior across protein and salt conditions, measures the partitioning of diverse macromolecules—including antibodies, lipids, small-molecule drugs, and RNA—and detects molecular colocalization with high statistical precision. Importantly, we establish a high-throughput assay to track real-time molecular exchange between preformed condensates and newly added, orthogonally tagged protein. These measurements reveal that condensate aging significantly reduces molecular dynamisms, likely due to altered biophysical properties with time. Compared to conventional imaging techniques that require surface immobilization or complex instrumentation, our method enables rapid, quantitative characterization of condensate dynamics and molecular content, providing a scalable framework for probing condensate function.

Similar content being viewed by others

Modulating biomolecular condensates: a novel approach to drug discovery

Article 16 August 2022

Spatially non-uniform condensates emerge from dynamically arrested phase separation

Article Open access 08 February 2023

Single-photon microscopy to study biomolecular condensates

Article Open access 12 December 2023

Data availability

All flow cytometry data (FCS files) are available at Zenodo under: https://zenodo.org/records/17279422. Source data for all main-text figures and Supplementary Figs. are provided in the accompanying Source Data file. The full coarse-grained (CG) molecular dynamics trajectory files exceed public repository size limits and are therefore available under restricted access for file-size reasons; access can be obtained by contacting the corresponding author (M.M.P.) Source data are provided with this paper.

References

  1. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Google Scholar 

  2. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Google Scholar 

  3. Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    Google Scholar 

  4. Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).

    Google Scholar 

  5. Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361. e317 (2020).

    Google Scholar 

  6. Sanders, D. W. et al. Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324.e328 (2020).

    Google Scholar 

  7. Plys, A. J. & Kingston, R. E. Dynamic condensates activate transcription. Science 361, 329–330 (2018).

    Google Scholar 

  8. Mohanty, P. et al. Principles governing the phase separation of multidomain proteins. Biochemistry 61, 2443–2455 (2022).

    Google Scholar 

  9. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    Google Scholar 

  10. Pei, G., Lyons, H., Li, P. & Sabari, B. R. Transcription regulation by biomolecular condensates. Nat. Rev. Mol. Cell Biol. 26, 213–236 (2024).

  11. Feric, M. & Misteli, T. Phase separation in genome organization across evolution. Trends Cell Biol. 31, 671–685 (2021).

    Google Scholar 

  12. Mathieu, C., Pappu, R. V. & Taylor, J. P. Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science 370, 56–60 (2020).

    Google Scholar 

  13. Gao, C. et al. Hyperosmotic-stress-induced liquid-liquid phase separation of ALS-related proteins in the nucleus. Cell Rep. 40, 111086 (2022).

  14. Mackenzie, I. R. et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95, 808–816.e809 (2017).

    Google Scholar 

  15. Boija, A., Klein, I. A. & Young, R. A. Biomolecular condensates and cancer. Cancer Cell 39, 174–192 (2021).

    Google Scholar 

  16. Tsang, B., Pritišanac, I., Scherer, S. W., Moses, A. M. & Forman-Kay, J. D. Phase separation as a missing mechanism for interpretation of disease mutations. Cell 183, 1742–1756 (2020).

    Google Scholar 

  17. Welles, R. M. et al. Determinants that enable disordered protein assembly into discrete condensed phases. Nat. Chem. 16, 1062–1072 (2024).

    Google Scholar 

  18. Rana, U. et al. Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility. Nat. Chem. 16, 1073–1082 (2024).

    Google Scholar 

  19. Lyons, H. et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186, 327–345.e328 (2023).

    Google Scholar 

  20. Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018).

    Google Scholar 

  21. Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020).

    Google Scholar 

  22. Kilgore, H. R. et al. Distinct chemical environments in biomolecular condensates. Nat. Chem. Biol. 20, 291–301 (2024).

    Google Scholar 

  23. Ambadi Thody, S. et al. Small-molecule properties define partitioning into biomolecular condensates. Nat. Chem. 16, 1794–1802 (2024).

    Google Scholar 

  24. Taylor, N. O., Wei, M.-T., Stone, H. A. & Brangwynne, C. P. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 117, 1285–1300 (2019).

    Google Scholar 

  25. Erdel, F. et al. Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid-liquid phase separation. Mol. Cell. 78, 236–249. e237 (2020).

    Google Scholar 

  26. Van Lindt, J. et al. A generic approach to study the kinetics of liquid–liquid phase separation under near-native conditions. Commun. Biol. 4, 77 (2021).

    Google Scholar 

  27. Arter, W. E. et al. Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat. Commun. 13, 7845 (2022).

    Google Scholar 

  28. Lee, M. et al. Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions. Nat. Commun. 15, 3216 (2024).

    Google Scholar 

  29. Brumbaugh-Reed, E. H., Gao, Y., Aoki, K. & Toettcher, J. E. Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag. Nat. Commun. 15, 6717 (2024).

    Google Scholar 

  30. Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).

    Google Scholar 

  31. Brzezinski, M. et al. Protein-specific crowding accelerates aging in protein condensates. Biomacromolecules 26, 2060–2075 (2024).

  32. Li, D. et al. Nucleolus assembly impairment leads to two-cell transcriptional repression via NPM1-mediated PRC2 recruitment. Nat. Struct. Mol. Biol. 30, 914–925 (2023).

    Google Scholar 

  33. Mensah, M. A. et al. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 614, 564–571 (2023).

    Google Scholar 

  34. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    Google Scholar 

  35. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    Google Scholar 

  36. Her, C. et al. Molecular interactions underlying the phase separation of HP1α: role of phosphorylation, ligand and nucleic acid binding. Nucleic Acids Res. 50, 12702–12722 (2022).

    Google Scholar 

  37. Zheng, T. et al. Molecular insights into the effect of 1, 6-hexanediol on FUS phase separation. EMBO J. 44, 2725–2740 (2025).

    Google Scholar 

  38. Ribbeck, K. & Görlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671 (2002).

  39. de Rond, L. et al. Quantification of light scattering detection efficiency and background in flow cytometry. Cytometry 99, 671 (2020).

  40. Welsh, J. A. et al. FCMPASS software aids extracellular vesicle light scatter standardization. Cytom. A 97, 569–581 (2020).

    Google Scholar 

  41. Satinover, S. J., Dove, J. D. & Borden, M. A. Single-particle optical sizing of microbubbles. Ultrasound Med. Biol. 40, 138–147 (2014).

    Google Scholar 

  42. Morishita, K., Watanabe, K., Naguro, I. & Ichijo, H. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response. Cell Rep. 42, 112315 (2023).

  43. Lin, Y.-H. et al. Electrostatics of salt-dependent reentrant phase behaviors highlights diverse roles of ATP in biomolecular condensates. Elife 13, RP100284 (2025).

    Google Scholar 

  44. Crabtree, M. D. et al. Ion binding with charge inversion combined with screening modulates DEAD box helicase phase transitions. Cell Rep. 42, 113375 (2023).

  45. Krainer, G. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Biophys. J. 120, 28a (2021).

    Google Scholar 

  46. Chauhan, G. et al. Active transport enables protein condensation in cells. Sci. Adv. 11, eadv7875 (2025).

    Google Scholar 

  47. Hua, X. et al. Light-field flow cytometry for high-resolution, volumetric and multiparametric 3D single-cell analysis. Nat. Commun. 15, 1975 (2024).

    Google Scholar 

  48. Zhang, Z. et al. A high-throughput technique to map cell images to cell positions using a 3D imaging flow cytometer. Proc. Natl. Acad. Sci. USA 119, e2118068119 (2022).

    Google Scholar 

  49. Marchisio, M. et al. Flow cytometry analysis of circulating extracellular vesicle subtypes from fresh peripheral blood samples. Int. J. Mol. Sci. 22, 48 (2020).

    Google Scholar 

  50. Fawaz, I., Schaz, S. H., Garidel, P., Bakowsky, U. & Blech, M. Assessment of imaging flow cytometry for the simultaneous discrimination of protein particles and silicone oil droplets in biologicals. J. Pharm. Innov. 19, 11 (2024).

    Google Scholar 

  51. Mitrea, D. M. et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. elife 5, e13571 (2016).

  52. Gibbs, E. et al. p14ARF forms meso-scale assemblies upon phase separation with NPM1. Nat. Commun. 15, 9531 (2024).

    Google Scholar 

  53. Casado-Combreras, M.Á. et al. Cytochrome c prompts the recruitment of its nuclear partners SET/TAF-Iβ and NPM1 into biomolecular condensates. iScience 27, 110435 (2024).

  54. Sawle, L. & Ghosh, K. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. J. Chem. Phys. 143, 085101 (2015).

  55. Sundaravadivelu Devarajan, D. et al. Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations. Nat. Commun. 15, 1912 (2024).

    Google Scholar 

  56. Lin, Y.-H., Forman-Kay, J. D. & Chan, H. S. Sequence-specific polyampholyte phase separation in membraneless organelles. Phys. Rev. Lett. 117, 178101 (2016).

    Google Scholar 

  57. Regy, R. M., Thompson, J., Kim, Y. C. & Mittal, J. Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins. Protein Sci. 30, 1371–1379 (2021).

    Google Scholar 

  58. Dignon, G. L., Zheng, W., Kim, Y. C., Best, R. B. & Mittal, J. Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput. Biol. 14, e1005941 (2018).

    Google Scholar 

  59. Dignon, G. L., Zheng, W., Best, R. B., Kim, Y. C. & Mittal, J. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc. Natl. Acad. Sci. USA 115, 9929–9934 (2018).

    Google Scholar 

  60. Mitrea, D. M. et al. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation. Nat. Commun. 9, 842 (2018).

    Google Scholar 

  61. Laflamme, G. & Mekhail, K. Biomolecular condensates as arbiters of biochemical reactions inside the nucleus. Communo. Biol. 3, 773 (2020).

    Google Scholar 

  62. Schuster, B. S. et al. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat. Commun. 9, 2985 (2018).

    Google Scholar 

  63. van Haren, M. H., Visser, B. S. & Spruijt, E. Probing the surface charge of condensates using microelectrophoresis. Nat. Commun. 15, 3564 (2024).

    Google Scholar 

  64. Dumelie, J. G. et al. Biomolecular condensates create phospholipid-enriched microenvironments. Nat. Chem. Biol. 20, 302–313 (2024).

    Google Scholar 

  65. WILLIAMS, S. E. & SCHACHT, J. Binding of neomycin and calcium to phospholipids and other anionic compounds. J. Antibiot. 39, 457–462 (1986).

    Google Scholar 

  66. Smith, P. J., Sykes, H. R., Fox, M. E. & Furlong, I. J. Subcellular distribution of the anticancer drug mitoxantrone in human and drug-resistant murine cells analyzed by flow cytometry and confocal microscopy and its relationship to the induction of DNA damage. Cancer Res. 52, 4000–4008 (1992).

    Google Scholar 

  67. Marrero-Alonso, J. et al. Unique SERM-like properties of the novel fluorescent tamoxifen derivative FLTX1. Eur. J. Pharm. Biopharm. 85, 898–910 (2013).

    Google Scholar 

  68. Galvanetto, N. et al. Extreme dynamics in a biomolecular condensate. Nature 619, 876–883 (2023).

    Google Scholar 

  69. Miki, T. et al. De novo designed YK peptides forming reversible amyloid for synthetic protein condensates in mammalian cells. Nat. Commun. 15, 8503 (2024).

    Google Scholar 

  70. Leppert, A. et al. Controlling drug partitioning in individual protein condensates through laser-induced microscale phase transitions. J. Am. Chem. Soc. 146, 19555–19565 (2024).

    Google Scholar 

  71. Ferrolino, M. C., Mitrea, D. M., Michael, J. R. & Kriwacki, R. W. Compositional adaptability in NPM1-SURF6 scaffolding networks enabled by dynamic switching of phase separation mechanisms. Nat. Commun. 9, 5064 (2018).

    Google Scholar 

  72. Zhang, Y. et al. The exchange dynamics of biomolecular condensates. Elife 12, RP91680 (2024).

    Google Scholar 

  73. Redner, S. A guide to first-passage processes (Cambridge University Press, 2001).

  74. Wurtz, J. D. & Lee, C. F. Chemical-reaction-controlled phase separated drops: formation, size selection, and coarsening. Phys. Rev. Lett. 120, 078102 (2018).

    Google Scholar 

  75. Emmanouilidis, L. et al. A solid beta-sheet structure is formed at the surface of FUS droplets during aging. Nat. Chem. Biol. 20, 1044–1052 (2024).

  76. Yu, W. et al. Aging-dependent evolving electrochemical potentials of biomolecular condensates regulate their physicochemical activities. Nat. Chem. 17, 756–766 (2025).

  77. Chatterjee, S. et al. Reversible kinetic trapping of FUS biomolecular condensates. Adv. Sci. 9, 2104247 (2022).

    Google Scholar 

  78. Ongwae, G. M. et al. Measurement of small molecule accumulation into diderm bacteria. ACS Infect. Dis. 9, 97–110 (2022).

    Google Scholar 

  79. André, A. A., Yewdall, N. A. & Spruijt, E. Crowding-induced phase separation and gelling by co-condensation of PEG in NPM1-rRNA condensates. Biophys. J. 122, 397–407 (2023).

    Google Scholar 

  80. Phan, T. M., Kim, Y. C., Debelouchina, G. T. & Mittal, J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. Elife 12, RP90820 (2024).

    Google Scholar 

  81. Anderson, J. A., Glaser, J. & Glotzer, S. C. HOOMD-blue: a Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput. Mater. Sci. 173, 109363 (2020).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the NIH grants 1R01AI178975-01 (M.M.P.), R35GM124893 (M.M.P.), R35GM153388 (J.M.), R01AI179080-01 (M.M.P.). We thank the W.M. Keck Center for Cellular Imaging for the usage of Zeiss LSM 980 microscopy System and Leica STELLARIS 8 confocal/FLIM/tauSTED microscope system (NIH OD030409) and thank the Flow Cytometry Core Facility for the usage of Amnis ImageStreamX Mark II system. We acknowledge the Texas A&M High Performance Research Computing (HPRC) for providing computational resources that have contributed to the results reported in the article. The content of this work is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Author notes
  1. These authors contributed equally: Yuchen He, George M. Ongwae.

Authors and Affiliations

  1. Department of Chemistry, University of Virginia, Charlottesville, VA, USA

    Yuchen He, George M. Ongwae, Joel A. Moses & Marcos M. Pires

  2. Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA

    Anupam Mondal & Jeetain Mittal

  3. Department of Chemistry, Texas A&M University, College Station, TX, USA

    Jeetain Mittal

  4. Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA

    Jeetain Mittal

  5. Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, VA, USA

    Marcos M. Pires

Authors
  1. Yuchen He
    View author publications

    Search author on:PubMed Google Scholar

  2. George M. Ongwae
    View author publications

    Search author on:PubMed Google Scholar

  3. Anupam Mondal
    View author publications

    Search author on:PubMed Google Scholar

  4. Joel A. Moses
    View author publications

    Search author on:PubMed Google Scholar

  5. Jeetain Mittal
    View author publications

    Search author on:PubMed Google Scholar

  6. Marcos M. Pires
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.H., G.M.O., and M.M.P. conceived and designed the study. Y.H. and G.M.O. performed all flow cytometry assays, imaging flow cytometry (IFC), and data analysis. Y.H. conducted confocal imaging and turbidity measurements. Y.H. and J.Mo. carried out protein expression and purification. A.M. performed the coarse-grained (CG) molecular dynamics simulations and theoretical analyses under the supervision of J.Mi. M.M.P. provided project oversight and conceptual guidance. Y.H. and M.M.P. wrote the manuscript with input from all authors. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Marcos M. Pires.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Ongwae, G.M., Mondal, A. et al. A high-throughput, flow cytometry approach to measure phase behavior and exchange in biomolecular condensates. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68093-6

Download citation

  • Received: 02 June 2025

  • Accepted: 17 December 2025

  • Published: 15 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68093-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Non-equilibrium dynamics of biological droplets: from Phase Separation to Self-Assembly

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing