Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Phosphoproteomics of aged insulin-resistant bone identifies P70S6K phosphorylation of AFF4 as a gene-specific transcriptional regulator
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 31 December 2025

Phosphoproteomics of aged insulin-resistant bone identifies P70S6K phosphorylation of AFF4 as a gene-specific transcriptional regulator

  • Mriga Dutt  ORCID: orcid.org/0000-0003-4240-12191,2,
  • Luoping Liao1,
  • Hani Jieun Kim  ORCID: orcid.org/0000-0003-1844-32753,4,5,6,
  • Ronnie Blazev  ORCID: orcid.org/0000-0002-2509-39071,2,
  • Audrey Chan1,2,
  • Hitesh Kore1,2,
  • Ayenachew Bezawork-Geleta1,
  • Li Dong1,
  • Isela Sarahi Rivera7,8,
  • Natalie K. Y. Wee9,
  • Jeffrey Molendijk1,
  • Julian P. H. Wong  ORCID: orcid.org/0009-0004-8537-186X1,2,
  • Vanessa R. Haynes1,
  • Veronica Uribe1,
  • Gordon S. Lynch  ORCID: orcid.org/0000-0001-9220-98101,2,
  • Kelly A. Smith  ORCID: orcid.org/0000-0002-8283-97601,
  • Magdalene K. Montgomery  ORCID: orcid.org/0000-0003-2551-41741,
  • Matthew J. Watt  ORCID: orcid.org/0000-0003-4064-41881,
  • Pengyi Yang  ORCID: orcid.org/0000-0003-1098-31383,4,
  • Garron T. Dodd  ORCID: orcid.org/0000-0002-7554-48761,
  • Stephin J. Vervoort  ORCID: orcid.org/0000-0001-7459-126X7,8,
  • Natalie A. Sims  ORCID: orcid.org/0000-0003-1421-84689 &
  • …
  • Benjamin L. Parker  ORCID: orcid.org/0000-0003-1818-21831,2 

Nature Communications , Article number:  (2025) Cite this article

  • 2409 Accesses

  • 5 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bone
  • Proteomics
  • Transcription

Abstract

Insulin action on the skeleton is essential for bone development and whole-body energy metabolism, however a global view of signaling in this tissue is lacking. Furthermore, whether there are signaling differences that drive the gene-specific activation under insulin-resistant (IR) or ageing conditions is unknown. Here, we perform a phosphoproteomic analysis of insulin signaling in the bones of young, lean, insulin-sensitive versus old, obese, IR mice revealing a rewiring of phosphorylation. We target dysregulated phosphoproteins in a zebrafish functional genomic screen of bone development and mineralization revealing candidates important for skeletal formation. One of these is ALF Transcription Elongation Factor 4 (AFF4), the core scaffold of the Super Elongation Complex and we show that phosphorylation of S831 on AFF4 is an insulin-dependent substrate of P70S6K and attenuated in aged, IR bone. Phosphorylation of S831 is defective in IR osteoblasts and associated with reduced transcriptional elongation at discrete locations in the genome. Mechanistically, we show phosphorylation of S831 increases recruitment of chromatin remodelers, ENL/AF9 to crotonylated histone via the YEATS domain, and promotes gene-specific activation. Our analysis identifies regulators of insulin action on the skeleton, further uncovering a mechanism of IR via locus-specific changes in transcriptional elongation and gene activation.

Similar content being viewed by others

Identification and validation of endoplasmic reticulum stress-related genes in patients with steroid-induced osteonecrosis of the femoral head

Article Open access 16 September 2024

Spheroid co-culture of BMSCs with osteocytes yields ring-shaped bone-like tissue that enhances alveolar bone regeneration

Article Open access 27 August 2022

The serine synthesis pathway drives osteoclast differentiation through epigenetic regulation of NFATc1 expression

Article Open access 10 January 2024

Data availability

The phosphoproteomics and proteomics data generated in this study are deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org/cgi/GetDataset) via the PRIDE113 and can be accessed through the links provided below: PRIDE: PXD054205 (Phosphoproteomic and proteomics of insulin signaling in aged mouse bone). PXD054212 (Zebrafish caudal fin phosphoproteomic of Rps6kb1a/b knockdown). PXD054247 (Analysis of insulin-regulated phosphorylation of AFF4 with Akti or S6Ki and S6K in vitro kinase assay). PXD054250 Affinity purification – mass spectrometry of AFF4 WT or S829/S831/3/5/8 A mutant). PXD054479(Proteomic and secretomic analysis of Kusa 4B10 osteoblasts). The targeted proteomic data can be accessed via Panorama Web Repository114 through the accession code Panorama Web: U of Melbourne – Parker Lab: PRM of mouse AFF4 S831 phosphorylation (Targeted phosphoproteomics of mouse S831 AFF4 phosphorylation in control or insulin resistant osteoblasts). The transcriptomic dataset generated in this study is deposited to NCBI and can be accessed through the accession code below: PRJNA1146056 (Transcriptomics of HEK293T cells expressing AFF4-wild type or AFF4-T829/S831/S833/S834/S835A mutant treated with or without insulin). Full list of Deposited Data is also provided in Supplementary Table 1. Source data are provided with this paper.

References

  1. Wettenhall, R. E., Schwartz, P. L. & Bornstein, J. Actions of insulin and growth hormone on colagen and chondroitin sulfate synthesis in bone organ cultures. Diabetes 18, 280–284 (1969).

    Google Scholar 

  2. Kream, B. E., Smith, M. D., Canalis, E. & Raisz, L. G. Characterization of the effect of insulin on collagen synthesis in fetal rat bone. Endocrinology 116, 296–302 (1985).

    Google Scholar 

  3. Ituarte, E. A., Halstead, L. R., Iida-Klein, A., Ituarte, H. G. & Hahn, T. J. Glucose transport system in UMR-106-01 osteoblastic osteosarcoma cells: regulation by insulin. Calcif. Tissue Int. 45, 27–33 (1989).

    Google Scholar 

  4. Fulzele, K. et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142, 309–319 (2010).

    Google Scholar 

  5. Ferron, M. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010).

    Google Scholar 

  6. Zhou, R. et al. Endocrine role of bone in the regulation of energy metabolism. Bone Res. 9, 25 (2021).

    Google Scholar 

  7. Vervoort, S. J. et al. Targeting transcription cycles in cancer. Nat. Rev. Cancer 22, 5–24 (2022).

    Google Scholar 

  8. Chen, R. H., Sarnecki, C. & Blenis, J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell Biol. 12, 915–927 (1992).

    Google Scholar 

  9. Deng, T. & Karin, M. c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 371, 171–175 (1994).

    Google Scholar 

  10. Morton, S., Davis, R. J., McLaren, A. & Cohen, P. A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. EMBO J. 22, 3876–3886 (2003).

    Google Scholar 

  11. Xu, R. et al. c-Jun N-Terminal Kinases (JNKs) are critical mediators of osteoblast activity in vivo. J. Bone Min. Res. 32, 1811–1815 (2017).

    Google Scholar 

  12. Chiba, N., Noguchi, Y., Seong, C. H., Ohnishi, T. & Matsuguchi, T. EGR1 plays an important role in BMP9-mediated osteoblast differentiation by promoting SMAD1/5 phosphorylation. FEBS Lett. 596, 1720–1732 (2022).

    Google Scholar 

  13. Zhang, Q. et al. RUNX2 co-operates with EGR1 to regulate osteogenic differentiation through Htra1 enhancers. J. Cell Physiol. 235, 8601–8612 (2020).

    Google Scholar 

  14. Aoi, Y. & Shilatifard, A. Transcriptional elongation control in developmental gene expression, aging, and disease. Mol. Cell 83, 3972–3999 (2023).

    Google Scholar 

  15. Day, D. S. et al. Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biol. 17, 120 (2016).

    Google Scholar 

  16. Vihervaara, A., Duarte, F. M. & Lis, J. T. Molecular mechanisms driving transcriptional stress responses. Nat. Rev. Genet 19, 385–397 (2018).

    Google Scholar 

  17. Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33, 960–982 (2019).

    Google Scholar 

  18. Ohe, S. et al. ERK-mediated NELF-A phosphorylation promotes transcription elongation of immediate-early genes by releasing promoter-proximal pausing of RNA polymerase II. Nat. Commun. 13, 7476 (2022).

    Google Scholar 

  19. Kettenbach, A. N., Sano, H., Keller, S. R., Lienhard, G. E. & Gerber, S. A. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle. J. Proteom. 114, 48–60 (2015).

    Google Scholar 

  20. Small, L. et al. Reduced insulin action in muscle of high fat diet rats over the diurnal cycle is not associated with defective insulin signaling. Mol. Metab. 25, 107–118 (2019).

    Google Scholar 

  21. Needham, E. J. et al. Personalized phosphoproteomics identifies functional signaling. Nat. Biotechnol. 40, 576–584 (2022).

    Google Scholar 

  22. Fedjaev, M. et al. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides. Mol. Biosyst. 8, 1461–1471 (2012).

    Google Scholar 

  23. Humphrey, S. J., Azimifar, S. B. & Mann, M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat. Biotechnol. 33, 990–995 (2015).

    Google Scholar 

  24. Matsuzaki, F. et al. An extensive and dynamic trans-omic network illustrating prominent regulatory mechanisms in response to insulin in the liver. Cell Rep. 36, 109569 (2021).

    Google Scholar 

  25. Brandon, A. E. et al. Protein Kinase C epsilon deletion in adipose tissue, but not in liver, improves glucose tolerance. Cell Metab. 29, 183–191.e187 (2019).

    Google Scholar 

  26. Entwisle, S. W. et al. Proteome and phosphoproteome analysis of brown adipocytes reveals that RICTOR loss dampens global insulin/AKT signaling. Mol. Cell Proteom. 19, 1104–1119 (2020).

    Google Scholar 

  27. Fazakerley, D. J. et al. Phosphoproteomics reveals rewiring of the insulin signaling network and multi-nodal defects in insulin resistance. Nat. Commun. 14, 923 (2023).

    Google Scholar 

  28. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).

    Google Scholar 

  29. Humphrey, S. J. et al. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab. 17, 1009–1020 (2013).

    Google Scholar 

  30. Yang, P., Humphrey, S. J., James, D. E., Yang, Y. H. & Jothi, R. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data. Bioinformatics 32, 252–259 (2016).

    Google Scholar 

  31. Kemp, B. E. & Pearson, R. B. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15, 342–346 (1990).

    Google Scholar 

  32. Stockli, J. et al. ABHD15 regulates adipose tissue lipolysis and hepatic lipid accumulation. Mol. Metab. 25, 83–94 (2019).

    Google Scholar 

  33. Chasman, D. I. et al. Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet 5, e1000730 (2009).

    Google Scholar 

  34. Izumi, K. et al. Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nat. Genet 47, 338–344 (2015).

    Google Scholar 

  35. Raible, S. E. et al. Clinical and molecular spectrum of CHOPS syndrome. Am. J. Med Genet A 179, 1126–1138 (2019).

    Google Scholar 

  36. Badolato, J., Gardiner, E., Morrison, N. & Eisman, J. Identification and characterisation of a novel human RNA-binding protein. Gene 166, 323–327 (1995).

    Google Scholar 

  37. Rose, J. P. et al. Deep coverage and quantification of the bone proteome provides enhanced opportunities for new discoveries in skeletal biology and disease. PLoS One 18, e0292268 (2023).

    Google Scholar 

  38. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Google Scholar 

  39. Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    Google Scholar 

  40. Geiger, T. et al. Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Mol. Cell Proteom. 12, 1709–1722 (2013).

    Google Scholar 

  41. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Google Scholar 

  42. Wisniewski, J. R. & Mann, M. A proteomics approach to the protein normalization problem: selection of unvarying proteins for MS-based proteomics and western blotting. J. Proteome Res 15, 2321–2326 (2016).

    Google Scholar 

  43. Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).

    Google Scholar 

  44. Keele, G. R. et al. Global and tissue-specific aging effects on murine proteomes. Cell Rep. 42, 112715 (2023).

    Google Scholar 

  45. Feskanich, D., Singh, V., Willett, W. C. & Colditz, G. A. Vitamin A intake and hip fractures among postmenopausal women. JAMA 287, 47–54 (2002).

    Google Scholar 

  46. Lim, L. S., Harnack, L. J., Lazovich, D. & Folsom, A. R. Vitamin A intake and the risk of hip fracture in postmenopausal women: the Iowa Women’s Health Study. Osteoporos. Int 15, 552–559 (2004).

    Google Scholar 

  47. Caire-Juvera, G., Ritenbaugh, C., Wactawski-Wende, J., Snetselaar, L. G. & Chen, Z. Vitamin A and retinol intakes and the risk of fractures among participants of the Women’s Health Initiative Observational Study. Am. J. Clin. Nutr. 89, 323–330 (2009).

    Google Scholar 

  48. de Jonge, E. A. et al. Dietary vitamin A intake and bone health in the elderly: the Rotterdam Study. Eur. J. Clin. Nutr. 69, 1360–1368 (2015).

    Google Scholar 

  49. Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224 (2019).

    Google Scholar 

  50. Liu, B., Cheng, S., Xing, W., Pourteymoor, S. & Mohan, S. RE1-silencing transcription factor (Rest) is a novel regulator of osteoblast differentiation. J. Cell Biochem 116, 1932–1938 (2015).

    Google Scholar 

  51. Morris, J. A. et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat. Genet 51, 258–266 (2019).

    Google Scholar 

  52. Zhang, D., Wang, J., Zhou, C. & Xiao, W. Zebrafish akt2 is essential for survival, growth, bone development, and glucose homeostasis. Mech. Dev. 143, 42–52 (2017).

    Google Scholar 

  53. Toyoshima, Y. et al. The role of insulin receptor signaling in zebrafish embryogenesis. Endocrinology 149, 5996–6005 (2008).

    Google Scholar 

  54. Huitema, L. F. et al. Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish. Proc. Natl. Acad. Sci. USA 109, 21372–21377 (2012).

    Google Scholar 

  55. Zhao, Y. G. et al. The p53-induced gene Ei24 is an essential component of the basal autophagy pathway. J. Biol. Chem. 287, 42053–42063 (2012).

  56. Reimann, E., Koks, S., Ho, X.D., Maasalu, K. & Martson, A. Whole exome sequencing of a single osteosarcoma case--integrative analysis with whole transcriptome RNA-seq data. Hum. Genomics. 8, 20 (2014).

  57. Rivadeneira, F. et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 41, 1199–1206 (2009).

  58. Xu, Y. et al. STARD3NL inhibits the osteogenic differentiation by inactivating the Wnt/beta-catenin pathway via binding to Annexin A2 in osteoporosis. J. Cell Mol. Med 26, 1643–1655 (2022).

    Google Scholar 

  59. Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N. & Engeszer, R. E. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev. Dyn. 238, 2975–3015 (2009).

    Google Scholar 

  60. Singleman, C. & Holtzman, N. G. Growth and maturation in the zebrafish, Danio rerio: a staging tool for teaching and research. Zebrafish 11, 396–406 (2014).

    Google Scholar 

  61. Strumillo, M. J. et al. Conserved phosphorylation hotspots in eukaryotic protein domain families. Nat. Commun. 10, 1977 (2019).

    Google Scholar 

  62. Tremblay, F. et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc. Natl. Acad. Sci. USA 104, 14056–14061 (2007).

    Google Scholar 

  63. Iovino, S. et al. Genetic insulin resistance is a potent regulator of gene expression and proliferation in human iPS cells. Diabetes 63, 4130–4142 (2014).

    Google Scholar 

  64. Gardini, A. et al. Integrator regulates transcriptional initiation and pause release following activation. Mol. Cell 56, 128–139 (2014).

    Google Scholar 

  65. Li, Y. et al. Molecular Coupling of Histone Crotonylation and Active Transcription by AF9 YEATS Domain. Mol. Cell 62, 181–193 (2016).

    Google Scholar 

  66. Garnar-Wortzel, L. et al. Chemical inhibition of ENL/AF9 YEATS domains in acute leukemia. ACS Cent. Sci. 7, 815–830 (2021).

    Google Scholar 

  67. Burchfield, J. G., Diaz-Vegas, A. & James, D. E. The insulin signalling network. Nat. Metab. 7, 1745–1764 (2025).

    Google Scholar 

  68. O’Brien, R. M., Streeper, R. S., Ayala, J. E., Stadelmaier, B. T. & Hornbuckle, L. A. Insulin-regulated gene expression. Biochem Soc. Trans. 29, 552–558 (2001).

    Google Scholar 

  69. Kim, S. J. & Kahn, C. R. Insulin stimulates p70 S6 kinase in the nucleus of cells. Biochem Biophys. Res. Commun. 234, 681–685 (1997).

    Google Scholar 

  70. Hornbeck, P. V. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40, D261–D270 (2012).

    Google Scholar 

  71. Parker, B. L. et al. Structural basis for phosphorylation and lysine acetylation cross-talk in a kinase motif associated with myocardial ischemia and cardioprotection. J. Biol. Chem. 289, 25890–25906 (2014).

    Google Scholar 

  72. Alpy, F. et al. Functional characterization of the MENTAL domain. J. Biol. Chem. 280, 17945–17952 (2005).

    Google Scholar 

  73. Alpy, F. et al. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. J. Cell Sci. 126, 5500–5512 (2013).

    Google Scholar 

  74. Dai, Q. et al. mTOR/Raptor signaling is critical for skeletogenesis in mice through the regulation of Runx2 expression. Cell Death Differ. 24, 1886–1899 (2017).

    Google Scholar 

  75. Clancy, D. J. et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104–106 (2001).

    Google Scholar 

  76. Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).

    Google Scholar 

  77. Bluher, M., Kahn, B. B. & Kahn, C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).

    Google Scholar 

  78. Debes, C. et al. Ageing-associated changes in transcriptional elongation influence longevity. Nature 616, 814–821 (2023).

    Google Scholar 

  79. Gyenis, A. et al. Genome-wide RNA polymerase stalling shapes the transcriptome during aging. Nat. Genet 55, 268–279 (2023).

    Google Scholar 

  80. Papadakis, A. et al. Age-associated transcriptional stress due to accelerated elongation and increased stalling of RNAPII. Nat. Genet 55, 2011–2012 (2023).

    Google Scholar 

  81. Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–144 (2009).

    Google Scholar 

  82. Haider, N. et al. Signaling defects associated with insulin resistance in nondiabetic and diabetic individuals and modification by sex. J. Clin. Invest. 131, e151818 (2021).

  83. Sharma, A. et al. Sexing bones: improving transparency of sex reporting to address bias within preclinical studies. J. Bone Min. Res 38, 5–13 (2023).

    Google Scholar 

  84. Robles, M. S., Humphrey, S. J. & Mann, M. Phosphorylation is a central mechanism for circadian control of metabolism and physiology. Cell Metab. 25, 118–127 (2017).

    Google Scholar 

  85. Larsen, J. K. et al. High-throughput proteomics uncovers exercise training and type 2 diabetes-induced changes in human white adipose tissue. Sci. Adv. 9, eadi7548 (2023).

    Google Scholar 

  86. Humphrey, S. J., Karayel, O., James, D. E. & Mann, M. High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nat. Protoc. 13, 1897–1916 (2018).

    Google Scholar 

  87. Blazev, R. et al. Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metab. 34, 1561–1577.e1569 (2022).

    Google Scholar 

  88. Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14, 68–85 (2019).

    Google Scholar 

  89. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Google Scholar 

  90. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Google Scholar 

  91. Willforss, J., Chawade, A. & Levander, F. NormalyzerDE: online tool for improved normalization of omics expression data and high-sensitivity differential expression analysis. J. Proteome Res 18, 732–740 (2019).

    Google Scholar 

  92. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).

    Google Scholar 

  93. Molendijk, J., Yip, R. & Parker, B. L. urPTMdb/TeaProt: upstream and downstream proteomics analysis. J. Proteome Res. 22, 302–310 (2023).

    Google Scholar 

  94. Szklarczyk, D. et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646 (2023).

    Google Scholar 

  95. Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Google Scholar 

  96. Kall, L., Canterbury, J. D., Weston, J., Noble, W. S. & MacCoss, M. J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923–925 (2007).

    Google Scholar 

  97. Taus, T. et al. Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res 10, 5354–5362 (2011).

    Google Scholar 

  98. Bruderer, R. et al. Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol. Cell Proteom. 16, 2296–2309 (2017).

    Google Scholar 

  99. Bekker-Jensen, D. B. et al. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat. Commun. 11, 787 (2020).

    Google Scholar 

  100. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421 (2009).

    Google Scholar 

  101. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinforma. 14, 128 (2013).

    Google Scholar 

  102. Frewen, B. & MacCoss, M. J. Using BiblioSpec for creating and searching tandem MS peptide libraries. Curr. Protoc. Bioinforma. 13, 13 17 11–13 17 12 (2007).

    Google Scholar 

  103. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Google Scholar 

  104. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Google Scholar 

  105. Wu, R. S. et al. A rapid method for directed gene knockout for screening in G0 zebrafish. Dev. Cell 46, 112–125.e114 (2018).

    Google Scholar 

  106. Gagnon, J. A. et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9, e98186 (2014).

    Google Scholar 

  107. Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–W74 (2007).

    Google Scholar 

  108. Kent, W. J. BLAT-the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Google Scholar 

  109. Spoorendonk, K. M. et al. Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development 135, 3765–3774 (2008).

    Google Scholar 

  110. Sakata-Haga, H. et al. A rapid and nondestructive protocol for whole-mount bone staining of small fish and Xenopus. Sci. Rep. 8, 7453 (2018).

    Google Scholar 

  111. Tarasco, M., Cordelieres, F. P., Cancela, M. L. & Laize, V. ZFBONE: an ImageJ toolset for semi-automatic analysis of zebrafish bone structures. Bone 138, 115480 (2020).

    Google Scholar 

  112. Niemisto, A., Dunmire, V., Yli-Harja, O., Zhang, W. & Shmulevich, I. Robust quantification of in vitro angiogenesis through image analysis. IEEE Trans. Med Imaging 24, 549–553 (2005).

    Google Scholar 

  113. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    Google Scholar 

  114. Sharma, V. et al. Panorama: a targeted proteomics knowledge base. J. Proteome Res. 13, 4205–4210 (2014).

    Google Scholar 

Download references

Acknowledgements

We thank Nicholas Williamson, Ching-Seng Ang, Shuai Nie, Swati Varshney and Michael Leeming for instrument support in the Bio21 Mass Spectrometry and Proteomics Facility. We thank Mr. Cameron Mackey and Mr. Bryan Ko for providing technical support for zebrafish maintenance. This research was supported by access to the Melbourne Mouse Metabolic Phenotyping Platform at The University of Melbourne. This work was funded by a University of Melbourne Driving Research Momentum Grant, an NHMRC Emerging Leader Investigator Grant APP2009642 and Australian Research Council Discovery Grant DP250100201 to B.L.P. G.T.D is funded by NHMRC Grants 2022/GNT2021126, 2020/GNT2002427, 2018/GNT1160043, Australian Research Council Grant DP220102910, Diabetes Australia Grants Y23G-DodG, Y20G-DodG and The University of Melbourne Deans Innovation Award. S.J.V. is supported by a CSL Centenary Fellowship and SNOW Medical Fellowship. We thank Prof Benjamin M. Hogan and Mr. Scott Paterson from the Peter MacCallum Cancer Center, Australia for assistance with the zebrafish functional screen. We thank Dr Marco Tarasco from The University of Algarve, Portugal, for designing the ZFBONE brightfield ImageJ macro used in the zebrafish bone mineralization analysis.

Author information

Authors and Affiliations

  1. Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia

    Mriga Dutt, Luoping Liao, Ronnie Blazev, Audrey Chan, Hitesh Kore, Ayenachew Bezawork-Geleta, Li Dong, Jeffrey Molendijk, Julian P. H. Wong, Vanessa R. Haynes, Veronica Uribe, Gordon S. Lynch, Kelly A. Smith, Magdalene K. Montgomery, Matthew J. Watt, Garron T. Dodd & Benjamin L. Parker

  2. Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Victoria, VIC, Australia

    Mriga Dutt, Ronnie Blazev, Audrey Chan, Hitesh Kore, Julian P. H. Wong, Gordon S. Lynch & Benjamin L. Parker

  3. Computational Systems Biology Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia

    Hani Jieun Kim & Pengyi Yang

  4. Charles Perkins Centre, School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia

    Hani Jieun Kim & Pengyi Yang

  5. The Kinghorn Cancer Centre and Cancer Research Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia

    Hani Jieun Kim

  6. School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia

    Hani Jieun Kim

  7. The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia

    Isela Sarahi Rivera & Stephin J. Vervoort

  8. Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia

    Isela Sarahi Rivera & Stephin J. Vervoort

  9. St. Vincent’s Institute of Medical Research, and Department of Medicine at St. Vincent’s Hospital, The University of Melbourne, Fitzroy, VIC, Australia

    Natalie K. Y. Wee & Natalie A. Sims

Authors
  1. Mriga Dutt
    View author publications

    Search author on:PubMed Google Scholar

  2. Luoping Liao
    View author publications

    Search author on:PubMed Google Scholar

  3. Hani Jieun Kim
    View author publications

    Search author on:PubMed Google Scholar

  4. Ronnie Blazev
    View author publications

    Search author on:PubMed Google Scholar

  5. Audrey Chan
    View author publications

    Search author on:PubMed Google Scholar

  6. Hitesh Kore
    View author publications

    Search author on:PubMed Google Scholar

  7. Ayenachew Bezawork-Geleta
    View author publications

    Search author on:PubMed Google Scholar

  8. Li Dong
    View author publications

    Search author on:PubMed Google Scholar

  9. Isela Sarahi Rivera
    View author publications

    Search author on:PubMed Google Scholar

  10. Natalie K. Y. Wee
    View author publications

    Search author on:PubMed Google Scholar

  11. Jeffrey Molendijk
    View author publications

    Search author on:PubMed Google Scholar

  12. Julian P. H. Wong
    View author publications

    Search author on:PubMed Google Scholar

  13. Vanessa R. Haynes
    View author publications

    Search author on:PubMed Google Scholar

  14. Veronica Uribe
    View author publications

    Search author on:PubMed Google Scholar

  15. Gordon S. Lynch
    View author publications

    Search author on:PubMed Google Scholar

  16. Kelly A. Smith
    View author publications

    Search author on:PubMed Google Scholar

  17. Magdalene K. Montgomery
    View author publications

    Search author on:PubMed Google Scholar

  18. Matthew J. Watt
    View author publications

    Search author on:PubMed Google Scholar

  19. Pengyi Yang
    View author publications

    Search author on:PubMed Google Scholar

  20. Garron T. Dodd
    View author publications

    Search author on:PubMed Google Scholar

  21. Stephin J. Vervoort
    View author publications

    Search author on:PubMed Google Scholar

  22. Natalie A. Sims
    View author publications

    Search author on:PubMed Google Scholar

  23. Benjamin L. Parker
    View author publications

    Search author on:PubMed Google Scholar

Contributions

B.L.P. conceptualized the study. M.D., L.L., R.B., A.C., A.B.-G., L.D., I.S.R., N.K.Y.W., V.R.H., V.U., J.P.H.W., B.L.P. performed the experiments. M.D., L.L., H.J.K., R.B., A.C., H.K., A.B.-G., J.M., P.Y., B.L.P. analyzed the data. G.S.L., K.A.S., M.K.M., M.J.W., G.T.D., S.J.V., N.A.S., B.L.P provided resources, guided experimental design, supervised and funded the research.

Corresponding author

Correspondence to Benjamin L. Parker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Wenbiao Chen, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1-13

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutt, M., Liao, L., Kim, H.J. et al. Phosphoproteomics of aged insulin-resistant bone identifies P70S6K phosphorylation of AFF4 as a gene-specific transcriptional regulator. Nat Commun (2025). https://doi.org/10.1038/s41467-025-68106-4

Download citation

  • Received: 28 April 2025

  • Accepted: 18 December 2025

  • Published: 31 December 2025

  • DOI: https://doi.org/10.1038/s41467-025-68106-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research