Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Time-dependent deployment of medial prefrontal cortical representations in male mice
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

Time-dependent deployment of medial prefrontal cortical representations in male mice

  • Junior Samuel Lopez-Yepez1,2 na1,
  • Anna Barta2 na1,
  • Juliane Martin2,
  • Maria Moltesen2,
  • Tsz-Fung Woo2,
  • Oliver Hulme3,4,
  • Ebru Demir5,6 &
  • …
  • Duda Kvitsiani  ORCID: orcid.org/0000-0003-3175-17742,5,6 

Nature Communications , Article number:  (2026) Cite this article

  • 3360 Accesses

  • 3 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Decision
  • Neural circuits
  • Reward

Abstract

In reward foraging tasks, prefrontal neurons track reward history, yet animals also show persistent choice-history biases. How these histories are represented in prefrontal circuits and guide animals’ decisions remains unknown. We asked whether past rewards and choices are incorporated by leaky integration or carried as discrete, history-specific codes, and how these codes are recruited under different task demands. We recorded medial prefrontal cortex (mPFC) activity while mice performed probabilistic reward foraging task and fit a reinforcement-learning model whose decision variable, combining reward and choice histories, captured behavior. Neurons represented history-specific rewards and choices while integrating them consistent with their behavioral impact. We then altered reward contingencies and inter-choice intervals and transiently inactivated mPFC. Neural representations adapted to changing task demands, yet the behavioral impact of inactivation was sensitive to inter-choice interval and reward contingencies. We conclude that mPFC hosts redundant computations whose influence is gated by timing and task structure.

Similar content being viewed by others

Sex differences in neural representations of social and nonsocial reward in the medial prefrontal cortex

Article Open access 13 September 2024

Interaction and functional specialization across a distributed neural circuit for flexible task control in macaques

Article Open access 24 January 2026

Population-level coding of avoidance learning in medial prefrontal cortex

Article Open access 29 July 2024

Data availability

All behavioral and spike sorted data are available from public repository Code Ocean https://codeocean.com/capsule/6312901/tree, https://doi.org/10.24433/CO.6312901.v1. Source data are provided in this paper.

Code availability

All code is available from public repository Code Ocean https://codeocean.com/capsule/6312901/tree, https://doi.org/10.24433/CO.6312901.v1.

References

  1. Sutton, R. S. & Barto, A. G. Introduction to reinforcement learning. (MIT press, Cambridge, 1998).

  2. Corrado, G. & Doya, K. Understanding neural coding through the model-based analysis of decision making. J. Neurosci. 27, 8178–8180 (2007).

    Google Scholar 

  3. Hattori, R. & Komiyama, T. Context-dependent persistency as a coding mechanism for robust and widely distributed value coding. Neuron 110, 502–515 (2022).

    Google Scholar 

  4. Barraclough, D. J., Conroy, M. L. & Lee, D. Prefrontal cortex and decision making in a mixed-strategy game. Nat. Neurosci. 7, 404–410 (2004).

    Google Scholar 

  5. Lau, B. & Glimcher, P. W. Dynamic response-by-response models of matching behavior in rhesus monkeys. J. Exp. Anal. Behav. 84, 555–579 (2005).

    Google Scholar 

  6. Kim, H., Sul, J. H., Huh, N., Lee, D. & Jung, M. W. Role of striatum in updating values of chosen actions. J. Neurosci. 29, 14701–14712 (2009).

    Google Scholar 

  7. Bari, B. A. et al. Stable representations of decision variables for flexible behavior. Neuron https://doi.org/10.1016/J.NEURON.2019.06.001 (2019).

    Google Scholar 

  8. Beron, C. C., Neufeld, S. Q., Linderman, S. W. & Sabatini, B. L. Mice exhibit stochastic and efficient action switching during probabilistic decision making. Proc. Natl. Acad. Sci. USA 119, e2113961119 (2022).

    Google Scholar 

  9. Belinsky, R., González, F. & Stahl, J. Optimal behavior and concurrent variable interval schedules. J. Math. Psychol. 48, 247–262 (2004).

    Google Scholar 

  10. Hwang, E. J., Dahlen, J. E., Mukundan, M. & Komiyama, T. History-based action selection bias in posterior parietal cortex. Nat. Commun. 8, 1242 (2017).

    Google Scholar 

  11. Hattori, R., Danskin, B., Babic, Z., Mlynaryk, N. & Komiyama, T. Area-specificity and plasticity of history-dependent value coding during learning. Cell 177, 1858–1872 (2019).

    Google Scholar 

  12. Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    Google Scholar 

  13. Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94, 891–907 (2017).

    Google Scholar 

  14. Phillips, C. G., Zeki, S. & Barlow, H. B. Localization of function in the cerebral cortex. Past, present and future. Brain 107, 327–361 (1984).

    Google Scholar 

  15. Pinto, L. et al. Task-dependent changes in the large-scale dynamics and necessity of cortical regions. Neuron 104, 810–824 (2019).

    Google Scholar 

  16. Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195–202 (2019).

    Google Scholar 

  17. Murakami, M., Shteingart, H., Loewenstein, Y. & Mainen, Z. F. Distinct sources of deterministic and stochastic components of action timing decisions in rodent frontal cortex. Neuron 94, 908–919 (2017).

    Google Scholar 

  18. Machens, C. K., Romo, R. & Brody, C. D. Functional, but not anatomical, separation of ‘what’ and ‘when’ in prefrontal cortex.J. Neurosci. 30 350–360 (2010).

  19. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Google Scholar 

  20. Hirokawa, J., Vaughan, A., Masset, P., Ott, T. & Kepecs, A. Frontal cortex neuron types categorically encode single decision variables. Nature 576, 446–451 (2019).

    Google Scholar 

  21. Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).

    Google Scholar 

  22. Wang, J. X. et al. Prefrontal cortex as a meta-reinforcement learning system. Nat. Neurosci. 21, 860–868 (2018).

    Google Scholar 

  23. Hattori, R. et al. Meta-reinforcement learning via orbitofrontal cortex. Nat. Neurosci. 26, 2182–2191 (2023).

    Google Scholar 

  24. Liu, D. et al. Medial prefrontal activity during delay period contributes to learning of a working memory task. Science 346, 458–463 (2014).

    Google Scholar 

  25. Sul, J. H., Kim, H., Huh, N., Lee, D. & Jung, M. W. Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making.Neuron 66, 449–460 (2010).

  26. Akam, T. et al. The anterior cingulate cortex predicts future states to mediate model-based action selection. Neuron 109, 149–163 (2021).

    Google Scholar 

  27. López-Yépez, J. S., Martin, J., Hulme, O. & Kvitsiani, D. Choice history effects in mice and humans improve reward harvesting efficiency. PLoS Comput. Biol. 17, e1009452 (2021).

    Google Scholar 

  28. Bari, B. A. & Gershman, S. J. Undermatching Is a Consequence of Policy Compression. J. Neurosci. 43, 447–457 (2023).

    Google Scholar 

  29. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Neuroscience: Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005).

    Google Scholar 

  30. Tsutsui, K. I., Grabenhorst, F., Kobayashi, S. & Schultz, W. A dynamic code for economic object valuation in prefrontal cortex neurons. Nat. Commun. 7, 1–16 (2016).

    Google Scholar 

  31. Paxinos, G. & Franklin, K. B. JThe Mouse Brain in Stereotaxic Coordinates (2008).

  32. Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K. & Redish, A. D. Quantitative measures of cluster quality for use in extracellular recordings. Neuroscience 131, 1–11 (2005).

    Google Scholar 

  33. Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).

    Google Scholar 

  34. Seo, H. & Lee, D. Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game. J. Neurosci. 27, 8366–8377 (2007).

    Google Scholar 

  35. Sugrue, L. P., Corrado, G. S. & Newsome, W. T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).

    Google Scholar 

  36. Libby, A. & Buschman, T. J. Rotational dynamics reduce interference between sensory and memory representations. Nat. Neurosci. 24, 715–726 (2021).

    Google Scholar 

  37. Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M. & Harris, K. D. Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels. Preprint at https://doi.org/10.1101/061481 (2016).

  38. Killcross, S. & Coutureau, E. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400–408 (2003).

    Google Scholar 

  39. Jog, M. S., Kubota, Y., Connolly, C. I. & Graybiel, A. M. Building neural representations of habits. Science 286, 1745–1749 (1999).

    Google Scholar 

  40. Ozdemir, A. T. et al. Unexpected rule-changes in a working memory task shape the firing of histologically identified delay-tuned neurons in the prefrontal cortex. Cell Rep. 30, 1613–1626 (2020).

    Google Scholar 

  41. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683 (2016).

    Google Scholar 

  42. Bolkan, S. S. et al. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat. Neurosci. 20, 987–996 (2017).

    Google Scholar 

  43. Baeg, E. H. et al. Dynamics of population code for working memory in the prefrontal cortex. Neuron 40, 177–188 (2003).

    Google Scholar 

  44. Kim, D. et al. Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory. Neuron 92, 902–915 (2016).

    Google Scholar 

  45. Bae, J. W. et al. Parallel processing of working memory and temporal information by distinct types of cortical projection neurons. Nat. Commun. 12, 4352 (2021).

    Google Scholar 

  46. Goldman-Rakic, P. S. Regional and cellular fractionation of working memory. Proc. Natl. Acad. Sci. USA 93, 13473 (1996).

    Google Scholar 

  47. Amarasekare, P. Spatial dynamics of foodwebs.Annu. Rev. Ecol. Evol. Syst. 39, 479–500 (2008).

  48. Fleshler, M. & Hoffman, H. S. A progression for generating variable-interval schedules. J. Exp. Anal. Behav. 5, 529–530 (1962).

    Google Scholar 

  49. De Wit, S., Kosaki, Y., Balleine, B. W. & Dickinson, A. Dorsomedial prefrontal cortex resolves response conflict in rats. J. Neurosci. 26, 5224–5229 (2006).

    Google Scholar 

  50. Tervo, D. G. R. et al. Behavioral variability through stochastic choice and its gating by anterior cingulate cortex. Cell 159, 21–32 (2014).

    Google Scholar 

  51. Walton, M. E., Bannerman, D. M. & Rushworth, M. F. S. The role of rat medial frontal cortex in effort-based decision making. J. Neurosci. 22, 10996–11003 (2002).

    Google Scholar 

  52. Ostlund, S. B. & Balleine, B. W. Lesions of medial prefrontal cortex disrupt the acquisition but not the expression of goal-directed learning. J. Neurosci. 25, 7763–7770 (2005).

    Google Scholar 

  53. Ito, M. & Doya, K. Validation of decision-making models and analysis of decision variables in the rat basal ganglia. J. Neurosci. 29, 9861–9874 (2009).

    Google Scholar 

  54. Waelti, P., Dickinson2, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001).

  55. Inagaki, H. K., Fontolan, L., Romani, S. & Svoboda, K. Discrete attractor dynamics underlies persistent activity in the frontal cortex. Nature 566, 212–217 (2019).

    Google Scholar 

  56. Fiorillo, C. D., Newsome, W. T. & Schultz, W. The temporal precision of reward prediction in dopamine neurons. Nat. Neurosci. 11, 966–973 (2008).

    Google Scholar 

  57. Kreitzer, A. C. & Malenka, R. C. Striatal plasticity and basal ganglia circuit function. Neuron 60, 543–554 (2008).

    Google Scholar 

  58. Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162, 622–634 (2015).

    Google Scholar 

  59. Yoshizawa, T., Ito, M. & Doya, K. Neuronal representation of a working memory-based decision strategy in the motor and prefrontal cortico-basal ganglia loops. eNeuro 10, https://doi.org/10.1523/eneuro.0413-22.2023 (2023).

  60. Grabot, L., Kayser, C. & van Wassenhove, V. Postdiction: when temporal regularity drives space perception through prestimulus alpha oscillations. eNeuro 8, https://doi.org/10.1523/ENEURO.0030-21 (2021).

  61. Gershman, S. J. Origin of perseveration in the trade-off between reward and complexity. Cognition 204, 104394 (2020).

    Google Scholar 

  62. Heidbreder, C. A. & Groenewegen, H. J. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci. Biobehav. Rev. 27, 555–579 (2003).

    Google Scholar 

  63. James, G., Witten, D., Hastie, T. & Tibshirani, R.An Introduction to Statistical Learning.(2026).

  64. Dayan, P. & Abbott, L. F.Theoretical Neuroscience. (Peter Dayan and L. F. Abbott, 1991).

  65. Schwartz, A. A reinforcement learning method for maximizing undiscounted rewards.https://doi.org/10.1016/B978-1-55860-307-3.50045-9 (1993).

  66. Corrado, G. S., Sugrue, L. P., Sebastian Seung, H. & Newsome, W. T. Linear-nonlinear-poisson models of primate choice dynamics. J. Exp. Anal. Behav. 84, 581–617 (2005).

    Google Scholar 

  67. Katahira, K. The relation between reinforcement learning parameters and the influence of reinforcement history on choice behavior. J. Math. Psychol. 66, 59–69 (2015).

    Google Scholar 

Download references

Acknowledgements

We express our gratitude to the members of the Kvitsiani lab, including Sophie Seidenbecher, Madeny Belkhiri, and Jesper Hagelskaer, for their valuable feedback on both the analysis and the writing of the manuscript. We thank Joseph Cheatwood for technical support with epifluorescence microscopy and assistance in imaging brain slices. We thank Ashok Litwin Kumar and Larry Abbott for their assistance with the neural data analysis. We also appreciate Naoshige Uchida for providing critical feedback on the manuscript. This study was supported by the Lundbeck Foundation grant: DANDRITE-R248-2016-2518 https://lundbeckfonden.com and startup funds from Southern Illinois University at Carbondale.

Author information

Author notes
  1. These authors contributed equally: Junior Samuel Lopez-Yepez, Anna Barta.

Authors and Affiliations

  1. Department of Chemistry, Aarhus University, Langelandsgade 140, Building 1513, 431, Aarhus C, Denmark

    Junior Samuel Lopez-Yepez

  2. DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Ole Worms Alle 6, Building 1182, Aarhus C, Denmark

    Junior Samuel Lopez-Yepez, Anna Barta, Juliane Martin, Maria Moltesen, Tsz-Fung Woo & Duda Kvitsiani

  3. Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark

    Oliver Hulme

  4. London Mathematical Laboratory, London, United Kingdom

    Oliver Hulme

  5. Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, USA

    Ebru Demir & Duda Kvitsiani

  6. School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL, USA

    Ebru Demir & Duda Kvitsiani

Authors
  1. Junior Samuel Lopez-Yepez
    View author publications

    Search author on:PubMed Google Scholar

  2. Anna Barta
    View author publications

    Search author on:PubMed Google Scholar

  3. Juliane Martin
    View author publications

    Search author on:PubMed Google Scholar

  4. Maria Moltesen
    View author publications

    Search author on:PubMed Google Scholar

  5. Tsz-Fung Woo
    View author publications

    Search author on:PubMed Google Scholar

  6. Oliver Hulme
    View author publications

    Search author on:PubMed Google Scholar

  7. Ebru Demir
    View author publications

    Search author on:PubMed Google Scholar

  8. Duda Kvitsiani
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.K. conceived and designed the project. A.B., J.M., M.M., T.-F.W., and E.D. performed the experiments. J.S.L.-Y., A.B., J.M., and D.K. analyzed the data. J.S.L.-Y. developed the computational modeling of behavior. O.H. contributed to modeling and interpretation. J.S.L.-Y., A.B., O.H., and D.K. wrote the manuscript with input from all authors. E.D. and D.K. revised the manuscript and addressed reviewers’ comments.

Corresponding author

Correspondence to Duda Kvitsiani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Michael Halassa and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Yepez, J.S., Barta, A., Martin, J. et al. Time-dependent deployment of medial prefrontal cortical representations in male mice. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68215-0

Download citation

  • Received: 17 January 2024

  • Accepted: 18 December 2025

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68215-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing