Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
DNA actively regulates the “safety-belt” dynamics of condensin during loop extrusion
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 07 January 2026

DNA actively regulates the “safety-belt” dynamics of condensin during loop extrusion

  • Jinyu Chen  ORCID: orcid.org/0000-0002-7039-90911,
  • Cibo Feng1,
  • Yong Wang  ORCID: orcid.org/0000-0001-9156-03772 &
  • …
  • Xiakun Chu  ORCID: orcid.org/0000-0003-3166-70701,3 

Nature Communications , Article number:  (2026) Cite this article

  • 3208 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chromatin remodelling
  • Computational biophysics
  • Molecular modelling

Abstract

Condensin plays an essential role in genome folding through its active DNA loop extrusion activity. Condensin contains a binding interface between its Ycg1 HEAT-repeat subunit and the Brn1 kleisin, together forming a “safety-belt” DNA-binding groove. This safety-belt architecture traps DNA inside the structural maintenance of chromosomes complex and prevents its dissociation during loop extrusion. The entrapment of DNA within the binding pocket of the complex is crucial for ATPase activity and loop extrusion. However, the molecular mechanism underlying DNA entrapment remains unclear. Here, we employ a multiscale computational approach to understand how DNA modulates yeast condensin’s safety-belt dynamics. Using all-atom simulations combined with AlphaFold3 predictions, we demonstrate that DNA binding stabilizes the Ycg1-Brn1 safety belt. Coarse-grained simulations capture the entire DNA-entrapment process and reveal an active regulatory role for DNA: outside the safety belt, DNA triggers opening, whereas once inside, it promotes closure and stabilizes the complex. Kinetic analyses show that the rate-limiting step in DNA entrapment depends on the tightness of the safety belt. A loose safety belt makes the stable closure of its “latch” and “buckle” components rate-limiting, whereas a tighter safety belt shifts the barrier to initial DNA entry.

Similar content being viewed by others

Insights into DNA repeat expansions among 900,000 biobank participants

Article Open access 07 January 2026

Structural dynamics of DNA unwinding by a replicative helicase

Article Open access 19 March 2025

Long-term whole blood DNA preservation by cost-efficient cryosilicification

Article Open access 21 October 2022

Data availability

All the processed data are presented in the main article and the Supplementary Information. Source data are provided in the Source data file. Necessary files for setting up all-atom and CG MD simulations, as well as the AlphaFold3 predicted structural data generated in this study, are publicly available on Zenodo at https://doi.org/10.5281/zenodo.17637587. Protein sequences used for structure prediction were retrieved from UniProtKB under accession codes Q06680 (Ycg1) [https://www.uniprot.org/uniprotkb/Q06680] and P38170 (Brn1) [https://www.uniprot.org/uniprotkb/P38170]. The DNA sequence used for prediction was derived from Protein Data Bank (PDB) entry 5OQO. Previously published protein structures used in this study are available in the PDB under accession codes 5OQO, 7QFW, and 7Q2Z. Source data are provided with this paper.

Code availability

Scripts and code used in this paper have been deposited in Github under accession https://github.com/JChen901/SafetyBeltDataand a backup of this repository is available via https://doi.org/10.5281/zenodo.17637587.

References

  1. Martin, C. A. et al. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev. 30, 2158 (2016).

    Google Scholar 

  2. Phillips, R. E., Soshnev, A. A. & Allis, C. D. Epigenomic reprogramming as a driver of malignant glioma. Cancer cell 38, 647 (2020).

    Google Scholar 

  3. Norton, H. K. & Phillips-Cremins, J. E. Crossed wires: 3D genome misfolding in human disease. J. Cell Biol. 216, 3441 (2017).

    Google Scholar 

  4. Uhlmann, F. Smc complexes: from dna to chromosomes. Nat. Rev. Mol. Cell Biol. 17, 399 (2016).

    Google Scholar 

  5. Jeppsson, K., Kanno, T., Shirahige, K. & Sjögren, C. The maintenance of chromosome structure: positioning and functioning of smc complexes. Nat. Rev. Mol. Cell Biol. 15, 601 (2014).

    Google Scholar 

  6. Terakawa, T. et al. The condensin complex is a mechanochemical motor that translocates along dna. Science 358, 672 (2017).

    Google Scholar 

  7. Hirano, T. Condensin-based chromosome organization from bacteria to vertebrates. Cell 164, 847 (2016).

    Google Scholar 

  8. Lee, B. G. et al. Cryo-em structures of holo condensin reveal a subunit flip-flop mechanism. Nat. Struct. Mol. Biol. 27, 743 (2020).

    Google Scholar 

  9. Barth, R. et al. Smc motor proteins extrude dna asymmetrically and can switch directions. Cell 188, 749 (2025).

    Google Scholar 

  10. Ganji, M. et al. Real-time imaging of dna loop extrusion by condensin. Science 360, 102 (2018).

    Google Scholar 

  11. Davidson, I. F. et al. Dna loop extrusion by human cohesin. Science 366, 1338 (2019).

    Google Scholar 

  12. Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by smc complexes. Nat. Rev. Mol. Cell Biol. 22, 445 (2021).

    Google Scholar 

  13. Arnould, C. et al. Loop extrusion as a mechanism for formation of dna damage repair foci. Nature 590, 660 (2021).

    Google Scholar 

  14. Oldenkamp, R. & Rowland, B. D. A walk through the smc cycle: from catching dnas to shaping the genome. Mol. Cell 82, 1616 (2022).

    Google Scholar 

  15. Shaltiel, I. A. et al. A hold-and-feed mechanism drives directional dna loop extrusion by condensin. Science 376, 1087 (2022).

    Google Scholar 

  16. Kim, E., Barth, R. & Dekker, C. Looping the genome with smc complexes. Annu. Rev. Biochem. 92, 15 (2023).

    Google Scholar 

  17. Yatskevich, S., Rhodes, J. & Nasmyth, K. Organization of chromosomal dna by smc complexes. Annu. Rev. Genet. 53, 445 (2019).

    Google Scholar 

  18. Hirano, T. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 7, 311 (2006).

    Google Scholar 

  19. Hassler, M. et al. Structural basis of an asymmetric condensin atpase cycle. Mol. Cell 74, 1175 (2019).

    Google Scholar 

  20. Takaki, R., Dey, A., Shi, G. & Thirumalai, D. Theory and simulations of condensin mediated loop extrusion in dna. Nat. Commun. 12, 5865 (2021).

    Google Scholar 

  21. Lee, B. G., Rhodes, J. & Löwe, J. Clamping of dna shuts the condensin neck gate. Proc. Natl. Acad. Sci. Usa. 119, e2120006119 (2022).

    Google Scholar 

  22. Kschonsak, M. et al. Structural basis for a safety-belt mechanism that anchors condensin to chromosomes. Cell 171, 588 (2017).

    Google Scholar 

  23. Piazza, I. et al. Association of condensin with chromosomes depends on dna binding by its heat-repeat subunits. Nat. Struct. Mol. Biol. 21, 560 (2014).

    Google Scholar 

  24. Eeftens, J. M. et al. Real-time detection of condensin-driven dna compaction reveals a multistep binding mechanism. EMBO J. 36, 3448 (2017).

    Google Scholar 

  25. Cuylen, S., Metz, J. & Haering, C. H. Condensin structures chromosomal dna through topological links. Nat. Struct. Mol. Biol. 18, 894 (2011).

    Google Scholar 

  26. Shi, Z., Gao, H., Bai, X. C. & Yu, H. Cryo-em structure of the human cohesin-nipbl-dna complex. Science 368, 1454 (2020).

    Google Scholar 

  27. Higashi, T. L. et al. A structure-based mechanism for DNA entry into the cohesin ring. Molecules 79, 917 (2020).

    Google Scholar 

  28. Collier, J. E. et al. Transport of dna within cohesin involves clamping on top of engaged heads by scc2 and entrapment within the ring by scc3. elife 9, e59560 (2020).

    Google Scholar 

  29. Gligoris, T. G. et al. Closing the cohesin ring: structure and function of its smc3-kleisin interface. Science 346, 963 (2014).

    Google Scholar 

  30. Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister dna molecules. Nature 454, 297 (2008).

    Google Scholar 

  31. Srinivasan, M. et al. The cohesin ring uses its hinge to organize dna using non-topological as well as topological mechanisms. Cell 173, 1508 (2018).

    Google Scholar 

  32. Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts dna by loop extrusion. Science 366, 1345 (2019).

    Google Scholar 

  33. Li, Y. et al. Structural basis for scc3-dependent cohesin recruitment to chromatin. elife 7, e38356 (2018).

    Google Scholar 

  34. Pradhan, B. et al. The smc5/6 complex is a DNA loop-extruding motor. Nature 616, 843 (2023).

    Google Scholar 

  35. Swett, A.D.Tothova, Z. Cohesin mutations and chromatin changes in cancer. Int. J. Cancer 158, 368–381 (2025).

  36. Solé-Ferran, M. & Losada, A. Cohesin in 3D: development, differentiation, and disease. Genes. Dev. 39, 679 (2025).

    Google Scholar 

  37. Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583 (2021).

    Google Scholar 

  38. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 630, 493 (2024).

    Google Scholar 

  39. Alamo, D. D. el, Sala, D., Mchaourab, H. S. & Meiler, J. Sampling alternative conformational states of transporters and receptors with alphafold2. elife 11, e75751 (2022).

    Google Scholar 

  40. Guan, X. et al. Predicting protein conformational motions using energetic frustration analysis and alphafold2. Proc. Natl. Acad. Sci. USA 121, e2410662121 (2024).

    Google Scholar 

  41. Guo, H. B. et al. Alphafold2 models indicate that protein sequence determines both structure and dynamics. Sci. Rep. 12, 10696 (2022).

    Google Scholar 

  42. Jussupow, A. & Kaila, V. R. Effective molecular dynamics from neural network-based structure prediction models. J. Chem. Theory Comput. 19, 1965 (2023).

    Google Scholar 

  43. McBride, J. M. et al. Alphafold2 can predict single-mutation effects. Phys. Rev. Lett. 131, 218401 (2023).

    Google Scholar 

  44. McBride, J. M. & Tlusty, T. Ai-predicted protein deformation encodes energy landscape perturbation. Phys. Rev. Lett. 133, 098401 (2024).

    Google Scholar 

  45. Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A. & Moreno, E. GMX_MMPBSA: a new tool to perform end-state free energy calculations with gromacs. J. Chem. Theory Comput. 17, 6281 (2021).

    Google Scholar 

  46. Miller, B. R. Mmpbsa. PY: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 8, 3314 (2012).

    Google Scholar 

  47. Rohs, R. et al. Origins of specificity in protein-dna recognition. Annu. Rev. Biochem. 79, 233 (2010).

    Google Scholar 

  48. Robellet, X., Vanoosthuyse, V. & Bernard, P. The loading of condensin in the context of chromatin. Curr. Genet. 63, 577 (2017).

    Google Scholar 

  49. Halford, S. E. & Marko, J. F. How do site-specific dna-binding proteins find their targets? Nucleic Acids Res. 32, 3040 (2004).

    Google Scholar 

  50. Davidson, I. F. et al. Rapid movement and transcriptional re-localization of human cohesin on dna. EMBO J. 35, 2671 (2016).

    Google Scholar 

  51. Kanke, M., Tahara, E., Huis in’t Veld, P. J. & Nishiyama, T. Cohesin acetylation and wapl-pds5 oppositely regulate translocation of cohesin along dna. EMBO J. 35, 2686 (2016).

    Google Scholar 

  52. Kim, H. & Loparo, J. J. Multistep assembly of dna condensation clusters by SMC. Nat. Commun. 7, 10200 (2016).

    Google Scholar 

  53. Stigler, J., Çamdere, G. Ö, Koshland, D. E. & Greene, E. C. Single-molecule imaging reveals a collapsed conformational state for dna-bound cohesin. Cell Rep. 15, 988 (2016).

    Google Scholar 

  54. Banigan, E. J., van den Berg, A. A., Brandão, H. B., Marko, J. F. & Mirny, L. A. Chromosome organization by one-sided and two-sided loop extrusion. eLife 9, e53558 (2020).

    Google Scholar 

  55. Best, R. B., Hummer, G. & Eaton, W. A. Native contacts determine protein folding mechanisms in atomistic simulations. Proc. Natl. Acad. Sci. USA 110, 17874 (2013).

    Google Scholar 

  56. Takemoto, A., Kimura, K., Yanagisawa, J., Yokoyama, S. & Hanaoka, F. Negative regulation of condensin i by ck2-mediated phosphorylation. EMBO J. 25, 5339 (2006).

    Google Scholar 

  57. Kagami, Y. et al. Mps1 phosphorylation of condensin ii controls chromosome condensation at the onset of mitosis. J. Cell Biol. 205, 781 (2014).

    Google Scholar 

  58. Tane, S. et al. Cell cycle-specific loading of condensin i is regulated by the n-terminal tail of its kleisin subunit. Elife 11, e84694 (2022).

    Google Scholar 

  59. Brotzakis, Z. F., Zhang, S., Murtada, M. H. & Vendruscolo, M. Alphafold prediction of structural ensembles of disordered proteins. Nat. Commun. 16, 1632 (2025).

    Google Scholar 

  60. Koide, H., Kodera, N., Bisht, S., Takada, S. & Terakawa, T. Modeling of dna binding to the condensin hinge domain using molecular dynamics simulations guided by atomic force microscopy. PLoS Comput. Biol. 17, e1009265 (2021).

    Google Scholar 

  61. Nagae, F., Murayama, Y. & Terakawa, T. Molecular mechanism of parental h3/h4 recycling at a replication fork. Nat. Commun. 15, 9485 (2024).

    Google Scholar 

  62. Nagae, F., Takada, S. & Terakawa, T. Histone chaperone nap1 dismantles an h2a/h2b dimer from a partially unwrapped nucleosome. Nucleic Acids Res. 51, 5351 (2023).

    Google Scholar 

  63. Inoue, K., Takada, S. & Terakawa, T. Coarse-grained molecular dynamics simulations of base-pair mismatch recognition protein muts sliding along DNA. Biophys. Physicobiol. 19, e190015 (2022).

    Google Scholar 

  64. Nagae, F., Brandani, G. B., Takada, S. & Terakawa, T. The lane-switch mechanism for nucleosome repositioning by DNA translocase. Nucleic Acids Res. 49, 9066 (2021).

    Google Scholar 

  65. Takada, S. et al. Modeling structural dynamics of biomolecular complexes by coarse-grained molecular simulations. Acc. Chem. Res. 48, 3026 (2015).

    Google Scholar 

  66. Kmiecik, S. et al. Coarse-grained protein models and their applications. Chem. Rev. 116, 7898 (2016).

    Google Scholar 

  67. Noid, W.G. Perspective: Coarse-grained models for biomolecular systems, J. of Chem. Phys. 139, (2013).

  68. Tworek, J. W. & Elcock, A. H. Orientationally averaged version of the rotne–prager–yamakawa tensor provides a fast but still accurate treatment of hydrodynamic interactions in brownian dynamics simulations of biological macromolecules. J. Chem. Theory Comput. 19, 5099 (2023).

    Google Scholar 

  69. Roel-Touris, J. & Bonvin, A. M. Coarse-grained hybrid integrative modeling of biomolecular interactions. Comput. Struct. Biotechnol. J. 18, 1182 (2020).

    Google Scholar 

  70. Wang, Y. et al. Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein. Proc. Natl. Acad. Sci. USA 110, E3743 (2013).

    Google Scholar 

  71. Koide, H., Kodera, N., Takada, S., Terakawa, T. Solution AFM imaging and coarse-grained molecular modeling of yeast condensin structural variation coupled to the atp hydrolysis cycle. J. Mol. Biol. 437, 169185 (2025).

  72. Kimura, K. & Hirano, T. Atp-dependent positive supercoiling of dna by 13s condensin: a biochemical implication for chromosome condensation. Cell 90, 625 (1997).

    Google Scholar 

  73. Kong, M. et al. Human condensin i and ii drive extensive atp-dependent compaction of nucleosome-bound dna. Mol. Cell 79, 99 (2020).

    Google Scholar 

  74. Borsellini, A. et al. Condensin ii activation by m18bp1. Mol. Cell 85, 2688 (2025).

    Google Scholar 

  75. Yu, Y. et al. Cryo-em structure of dna-bound smc5/6 reveals dna clamping enabled by multi-subunit conformational changes. Proc. Natl. Acad. Sci. USA 119, e2202799119 (2022).

    Google Scholar 

  76. Vennelakanti, V., Nazemi, A., Mehmood, R., Steeves, A. H. & Kulik, H. J. Harder, better, faster, stronger: large-scale qm and qm/mm for predictive modeling in enzymes and proteins. Curr. Opin. Struct. Biol. 72, 9 (2022).

    Google Scholar 

  77. Kubar^, T., Elstner, M. & Cui, Q. Hybrid quantum mechanical/molecular mechanical methods for studying energy transduction in biomolecular machines. Annu. Rev. Biophys. 52, 525 (2023).

    Google Scholar 

  78. Higashi, T. L. & Uhlmann, F. Smc complexes: lifting the lid on loop extrusion. Curr. Opin. Cell Biol. 74, 13 (2022).

    Google Scholar 

  79. Webb, B. & Sali, A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinf. 54, 5 (2016).

    Google Scholar 

  80. Jo, S., Lim, J. B., Klauda, J. B. & Im, W. Charmm-gui membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50 (2009).

    Google Scholar 

  81. Huang, J. et al. Charmm36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71 (2017).

    Google Scholar 

  82. Abraham, M. J. et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19 (2015).

    Google Scholar 

  83. Li, W., Wang, W. & Takada, S. Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains. Proc. Natl. Acad. Sci. USA 111, 10550 (2014).

    Google Scholar 

  84. Li, W., Terakawa, T., Wang, W. & Takada, S. Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2ouf-knot. Proc. Natl. Acad. Sci. USA 109, 17789 (2012).

    Google Scholar 

  85. Li, W., Yoshii, H., Hori, N., Kameda, T. & Takada, S. Multiscale methods for protein folding simulations. Methods 52, 106 (2010).

    Google Scholar 

  86. Terakawa, T. & Takada, S. Multiscale ensemble modeling of intrinsically disordered proteins: p53 n-terminal domain. Biophys. J. 101, 1450 (2011).

    Google Scholar 

  87. Freeman, G.S., Hinckley, D.M., Lequieu, J.P., Whitmer, J.K., De Pablo, J.J. Coarse-grained modeling of DNA curvature. J. Chem. Phys. 141, 165103 (2014).

  88. Niina, T., Brandani, G. B., Tan, C. & Takada, S. Sequence-dependent nucleosome sliding in rotation-coupled and uncoupled modes revealed by molecular simulations. PLoS Comput. Biol. 13, e1005880 (2017).

    Google Scholar 

  89. Veitshans, T., Klimov, D. & Thirumalai, D. Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties. Fold. Des. 2, 1 (1997).

    Google Scholar 

  90. Hinckley, D.M., Freeman, G.S., Whitmer, J.K., De Pablo, J.J. An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: structure, thermodynamics, and dynamics of hybridization. J. Chem. Phys. 139, 144903 (2013).

  91. Tan, C., Terakawa, T. & Takada, S. Dynamic coupling among protein binding, sliding, and dna bending revealed by molecular dynamics. J. Am. Chem. Soc. 138, 8512 (2016).

    Google Scholar 

  92. Freeman, G. S., Lequieu, J. P., Hinckley, D. M., Whitmer, J. K. & De Pablo, J. J. Dna shape dominates sequence affinity in nucleosome formation. Phys. Rev. Lett. 113, 168101 (2014).

    Google Scholar 

  93. Jung, J. et al. Genesis 2.1: high-performance molecular dynamics software for enhanced sampling and free-energy calculations for atomistic, coarse-grained, and quantum mechanics/molecular mechanics models. J. Phys. Chem. B 128, 6028 (2024).

    Google Scholar 

  94. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33 (1996).

    Google Scholar 

  95. Schrodinger, L. The pymol molecular graphics system. Version 1, 8 (2015).

    Google Scholar 

  96. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. Plumed 2: New feathers for an old bird. Comput. Phys. Commun. 185, 604 (2014).

    Google Scholar 

  97. Bussi, G. & Tribello, G. A. Analyzing and biasing simulations with plumed. Methods Mol. Biol. 2022, 529 (2019).

    Google Scholar 

  98. Wang, Y., Austin, R. H. & Cox, E. C. Single molecule measurements of repressor protein 1d diffusion on dna. Phys. Rev. Lett. 97, 048302 (2006).

    Google Scholar 

  99. Chu, X. & Muñoz, V. Roles of conformational disorder and downhill folding in modulating protein–dna recognition. Phys. Chem. Chem. Phys. 19, 28527 (2017).

    Google Scholar 

  100. Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. Mdanalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319 (2011).

    Google Scholar 

  101. Spanier, E.H. Algebraic topology (Springer, 1989).

Download references

Acknowledgements

X.C. thanks Prof. Qianyuan Tang for the useful discussion. X.C. acknowledges support from the National Natural Science Foundation of China (Grant Nos. 12474201 and 32201020), the General Program of the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515010862), the Guangdong Provincial Project (Grant No. 2023QN10X037) and the Guangdong S&T Program (Grant No. 2025A0505000027). Y.W. thanks the Information Technology Center and State Key Lab of CAD&CG, Zhejiang University, for computational support. The authors also acknowledge the Green e Materials Laboratory (GeM) and HPC+AI Intelligence Computing Center at the Hong Kong University of Science and Technology (Guangzhou) for providing computational support.

Author information

Authors and Affiliations

  1. Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

    Jinyu Chen, Cibo Feng & Xiakun Chu

  2. College of Life Sciences, Zhejiang University, Hangzhou, China

    Yong Wang

  3. Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

    Xiakun Chu

Authors
  1. Jinyu Chen
    View author publications

    Search author on:PubMed Google Scholar

  2. Cibo Feng
    View author publications

    Search author on:PubMed Google Scholar

  3. Yong Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiakun Chu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.C. and X.C. conceived the overall study. J.C. performed and analyzed all simulations under the supervision of X.C. X.C., Y.W., and C.F. participated in discussions during the study and contributed to the development of the methodology. J.C. wrote the first draft of the manuscript with input from X.C. and Y.W. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Xiakun Chu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

: Nature Communications thanks the anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Descriptions of Additional Supplementary Files

Supplementary Movie 1

Reporting Summary

Source data

Transparent Peer Review file

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Feng, C., Wang, Y. et al. DNA actively regulates the “safety-belt” dynamics of condensin during loop extrusion. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68239-6

Download citation

  • Received: 10 May 2025

  • Accepted: 18 December 2025

  • Published: 07 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68239-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing