Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Cross-species evidence for a developmental origin of adult hypersomnia with loss of synaptic adhesion molecules beat-Ia/CADM2
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

Cross-species evidence for a developmental origin of adult hypersomnia with loss of synaptic adhesion molecules beat-Ia/CADM2

  • Kyla Mace  ORCID: orcid.org/0000-0002-4548-87461,2,
  • Amber Zimmerman2,3,4,
  • Alessandra Chesi  ORCID: orcid.org/0000-0002-0954-74464,5,
  • Fusun Doldur-Balli  ORCID: orcid.org/0000-0002-3614-87663,
  • Hayle Kim  ORCID: orcid.org/0009-0009-5635-20176,
  • Erika Almeraya del Valle  ORCID: orcid.org/0000-0002-5071-24232,
  • Jeffrey B. Rosa6,
  • Allan I. Pack2,3,
  • Struan F. A. Grant  ORCID: orcid.org/0000-0003-2025-53024,7,8,9 &
  • …
  • Matthew S. Kayser  ORCID: orcid.org/0000-0003-2359-49672,6,10 

Nature Communications , Article number:  (2026) Cite this article

  • 1824 Accesses

  • 21 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Circadian rhythms and sleep
  • Development of the nervous system
  • Translational research

Abstract

Idiopathic hypersomnia (IH) is a poorly understood sleep disorder characterized by excessive daytime sleepiness despite normal nighttime sleep. Combining human genomics with behavioral and mechanistic studies in fish and flies, we uncover a role for beat-Ia/CADM2, synaptic adhesion molecules of the immunoglobulin superfamily, in excessive sleepiness. Neuronal knockdown of Drosophila beat-Ia results in sleepy flies and loss of the vertebrate ortholog of beat-Ia, CADM2, results in sleepy fish. We delineate a developmental function for beat-Ia in synaptic elaboration of neuropeptide F (NPF) neurites projecting to the suboesophageal zone (SEZ) of the fly brain. Brain connectome and experimental evidence demonstrate these NPF outputs synapse onto a subpopulation of SEZ GABAergic neurons to stabilize arousal. NPF is the Drosophila homolog of vertebrate neuropeptide Y (NPY), and an NPY receptor agonist restores sleep to normal levels in zebrafish lacking CADM2. These findings point towards NPY modulation as a treatment target for human hypersomnia.

Similar content being viewed by others

Sleep pressure modulates single-neuron synapse number in zebrafish

Article Open access 01 May 2024

Two distinct phenotypes in Snijders Blok-Campeau syndrome and characterization of the behavioral phenotype in a zebrafish model

Article 23 February 2025

Exploration of phosphoproteomic association during epimorphic regeneration

Article Open access 10 February 2025

Data availability

All data needed to evaluate the conclusions in the paper are present in Source Data and/or Supplementary Data files. Source data are provided with this paper.

References

  1. Grandner, M. A. Sleep, health, and society. Sleep. Med. Clin. 15, 319–340 (2020).

    Google Scholar 

  2. Zamore, Z. & Veasey, S. C. Neural consequences of chronic sleep disruption. Trends Neurosci. 45, 678–691 (2022).

    Google Scholar 

  3. Lane, J. M. et al. Genetics of circadian rhythms and sleep in human health and disease. Nat. Rev. Genet. 24, 4–20 (2023).

    Google Scholar 

  4. Sehgal, A. & Mignot, E. Genetics of Sleep and Sleep Disorders. Cell 146, 194–207 (2011).

    Google Scholar 

  5. Chakravarti, L., Moscato, E. H. & Kayser, M. S. Unraveling the Neurobiology of Sleep and Sleep Disorders Using Drosophila. in Current Topics in Developmental Biology vol. 121 253–285 (Elsevier, 2017).

  6. Donelson, N. C. & Sanyal, S. Use of Drosophila in the investigation of sleep disorders. Exp. Neurol. 274, 72–79 (2015).

    Google Scholar 

  7. Raizen, D., Mason, T. & Pack, A. Genetic basis for sleep regulation and sleep disorders. Semin Neurol. 26, 467–483 (2006).

    Google Scholar 

  8. Palermo, J. et al. Variant-to-gene mapping followed by cross-species genetic screening identifies GPI-anchor biosynthesis as a regulator of sleep. Sci. Adv. 9, eabq0844 (2023).

    Google Scholar 

  9. Gottlieb, D. J., O’Connor, G. T. & Wilk, J. B. Genome-wide association of sleep and circadian phenotypes. BMC Med. Genet. 8, S9 (2007).

    Google Scholar 

  10. Raizen, D. M. & Wu, M. N. Genome-wide association studies of sleep disorders. Chest 139, 446–452 (2011).

    Google Scholar 

  11. Trotti, L. M. Idiopathic hypersomnia. Sleep. Med. Clin. 12, 331–344 (2017).

    Google Scholar 

  12. Trotti, L. M. & Arnulf, I. Idiopathic hypersomnia and other hypersomnia syndromes. Neurotherapeutics 18, 20–31 (2021).

    Google Scholar 

  13. Arnulf, I., Leu-Semenescu, S. & Dodet, P. Precision medicine for idiopathic hypersomnia. Sleep. Med. Clin. 17, 379–398 (2022).

    Google Scholar 

  14. Sforza, E., Hupin, D. & Roche, F. Mononucleosis: a possible cause of idiopathic hypersomnia. Front. Neurol. 9, 922 (2018).

    Google Scholar 

  15. Landzberg, D. & Trotti, L. M. Is idiopathic hypersomnia a circadian rhythm disorder? Curr. Sleep Med. Rep. https://doi.org/10.1007/s40675-019-00154-x. (2019).

  16. Materna, L. et al. Idiopathic hypersomnia patients revealed longer circadian period length in peripheral skin fibroblasts. Front. Neurol. 9, 424 (2018).

    Google Scholar 

  17. Rye, D. B. et al. Modulation of vigilance in the primary hypersomnias by endogenous enhancement of GABAA receptors. Sci. Transl. Med. 4, 161 151–161 151 (2012).

    Google Scholar 

  18. Ali, M., Auger, R. R., Slocumb, N. L. & Morgenthaler, T. I. Idiopathic hypersomnia: clinical features and response to treatment. J. Clin. Sleep. Med. 5, 562–568 (2009).

    Google Scholar 

  19. Bassetti, C. & Aldrich, M. S. Idiopathic hypersomnia. A series of 42 patients. Brain 120, 1423–1435 (1997).

    Google Scholar 

  20. Anderson, K. N., Pilsworth, S., Sharples, L. D., Smith, I. E. & Shneerson, J. M. Idiopathic hypersomnia: a study of 77 cases. Sleep 30, 1274–1281 (2007).

    Google Scholar 

  21. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    Google Scholar 

  22. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Google Scholar 

  23. Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet 52, 8–16 (2020).

    Google Scholar 

  24. Cubeñas-Potts, C. & Corces, V. G. Topologically associating domains: an invariant framework or a dynamic scaffold? Nucleus 6, 430–434 (2015).

    Google Scholar 

  25. Way, G. P., Youngstrom, D. W., Hankenson, K. D., Greene, C. S. & Grant, S. F. Implicating candidate genes at GWAS signals by leveraging topologically associating domains. Eur. J. Hum. Genet. 25, 1286–1289 (2017).

    Google Scholar 

  26. Wang, H. et al. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun. 10, 3503 (2019).

    Google Scholar 

  27. Dashti, H. S. et al. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat. Commun. 12, 900 (2021).

    Google Scholar 

  28. Dashti, H. S. et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 10, 1100 (2019).

    Google Scholar 

  29. Tanida, K. et al. Genome-wide association study of idiopathic hypersomnia in a Japanese population. Sleep Biol. Rhythms https://doi.org/10.1007/s41105-021-00349-2. (2021).

  30. Hu, Y. et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinforma. 12, 357 (2011).

    Google Scholar 

  31. Bazan, J. F. & Goodman, C. S. Modular structure of the Drosophila Beat protein. Curr. Biol. 7, R338–R339 (1997).

    Google Scholar 

  32. Pietri, T., Easley-Neal, C., Wilson, C. & Washbourne, P. Six cadm/synCAM genes are expressed in the nervous system of developing zebrafish. Dev. Dyn. 237, 233–246 (2008).

    Google Scholar 

  33. Frei, J. A. & Stoeckli, E. T. SynCAMs–from axon guidance to neurodevelopmental disorders. Mol. Cell. Neurosci. 81, 41–48 (2017).

    Google Scholar 

  34. Fambrough, D. & Goodman, C. S. The Drosophila beaten path gene encodes a novel secreted protein that regulates defasciculation at motor axon choice points. Cell 87, 1049–1058 (1996).

    Google Scholar 

  35. Cooper, J. M., Halter, K. A. & Prosser, R. A. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol. Sleep. Circadian Rhythms 5, 15–36 (2018).

    Google Scholar 

  36. Li, H. et al. Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development. eLife 6, e28111 (2017).

    Google Scholar 

  37. Siebert, M., Banovic, D., Goellner, B. & Aberle, H. Drosophila motor axons recognize and follow a sidestep-labeled substrate pathway to reach their target fields. Genes Dev. 23, 1052–1062 (2009).

    Google Scholar 

  38. Jong, S., Cavallo, J. A., Rios, C. D., Dworak, H. A. & Sink, H. Target recognition and synaptogenesis by motor axons: responses to the sidestep protein. Int. J. dev. neurosci. 23, 397–410 (2005).

    Google Scholar 

  39. Girard, F. et al. Chromatin immunoprecipitation reveals a novel role for the Drosophila Soxneuro transcription factor in axonal patterning. Dev. Biol. 299, 530–542 (2006).

    Google Scholar 

  40. Wiggin, T. D. et al. Covert sleep-related biological processes are revealed by probabilistic analysis in Drosophila. Proc. Natl. Acad. Sci. USA 117, 10024–10034 (2020).

    Google Scholar 

  41. Chowdhury, B., Abhilash, L., Ortega, A., Liu, S. & Shafer, O. Homeostatic control of deep sleep and molecular correlates of sleep pressure in Drosophila. eLife 12, e91355 (2023).

    Google Scholar 

  42. Niederkofler, V., Baeriswyl, T., Ott, R. & Stoeckli, E. T. Nectin-like molecules/SynCAMs are required for post-crossing commissural axon guidance. Development 137, 427–435 (2010).

    Google Scholar 

  43. Pellissier, F., Gerber, A., Bauer, C., Ballivet, M. & Ossipow, V. The adhesion molecule Necl-3/SynCAM-2 localizes to myelinated axons, binds to oligodendrocytes and promotes cell adhesion. BMC Neurosci. 8, 90 (2007).

    Google Scholar 

  44. Leung, L. C. et al. Neural signatures of sleep in zebrafish. Nature 571, 198–204 (2019).

    Google Scholar 

  45. Zhdanova, I. V. Sleep in zebrafish. Zebrafish 3, 215–226 (2006).

    Google Scholar 

  46. Zhdanova, I. V., Wang, S. Y., Leclair, O. U. & Danilova, N. P. Melatonin promotes sleep-like state in zebrafish. Brain Res. 903, 263–268 (2001).

    Google Scholar 

  47. Yokogawa, T. et al. Characterization of Sleep in Zebrafish and Insomnia in Hypocretin Receptor Mutants. PLoS Biol. 5, e277 (2007).

    Google Scholar 

  48. Kroll, F. et al. A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. eLife 10, e59683 (2021).

    Google Scholar 

  49. Aberle, H. Searching for guidance cues: follow the Sidestep trail. Fly 3, 270–273 (2009).

    Google Scholar 

  50. McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. Sig. 2004, pl6–pl6, (2004).

  51. He, C., Yang, Y., Zhang, M., Price, J. L. & Zhao, Z. Regulation of sleep by neuropeptide Y-like system in Drosophila melanogaster. PLoS ONE 8, e74237 (2013).

    Google Scholar 

  52. Chung, B. Y. et al. Drosophila neuropeptide F signaling independently regulates feeding and sleep-wake behavior. Cell Rep. 19, 2441–2450 (2017).

    Google Scholar 

  53. He, C. et al. Regulation of circadian locomotor rhythm by neuropeptide Y-like system in Drosophila melanogaster. Insect Mol. Biol. 22, 376–388 (2013).

    Google Scholar 

  54. Ja, W. W. et al. Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA 104, 8253–8256 (2007).

    Google Scholar 

  55. Liu, Q., Liu, S., Kodama, L., Driscoll, M. R. & Wu, M. N. Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22, 2114–2123 (2012).

    Google Scholar 

  56. Pimentel, D. et al. Operation of a homeostatic sleep switch. Nature 536, 333–337 (2016).

    Google Scholar 

  57. Donlea, J. M., Thimgan, M. S., Suzuki, Y., Gottschalk, L. & Shaw, P. J. Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 332, 1571–1576 (2011).

    Google Scholar 

  58. Donlea, J. M. et al. Recurrent circuitry for balancing sleep need and sleep. Neuron 97, 378–389.e4 (2018).

    Google Scholar 

  59. Donlea, J. M., Pimentel, D. & Miesenböck, G. Neuronal machinery of sleep homeostasis in Drosophila. Neuron 81, 860–872 (2014).

    Google Scholar 

  60. Dorkenwald, S. et al. FlyWire: online community for whole-brain connectomics. Nat. Methods 19, 119–128 (2022).

    Google Scholar 

  61. Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature 634, 139–152 (2024).

  62. BrainCircuits.io. https://braincircuits.io/ (2023).

  63. Eckstein, N. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 187, 2574–2594.e23 (2024).

    Google Scholar 

  64. Rihel, J. et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327, 348–351 (2010).

    Google Scholar 

  65. Larhammar, D. & Salaneck, E. Molecular evolution of NPY receptor subtypes. Neuropeptides 38, 141–151 (2004).

    Google Scholar 

  66. Garczynski, S. F., Brown, M. R., Shen, P., Murray, T. F. & Crim, J. W. Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides 23, 773–780 (2002).

    Google Scholar 

  67. Park, C. et al. Structural basis of neuropeptide Y signaling through Y1 receptor. Nat. Commun. 13, 853 (2022).

    Google Scholar 

  68. Grandt, D. et al. Novel generation of hormone receptor specificity by amino terminal processing of peptide YY. Biochem. Biophys. Res. Commun. 186, 1299–1306 (1992).

    Google Scholar 

  69. Singh, C., Rihel, J. & Prober, D. A. Neuropeptide Y regulates sleep by modulating noradrenergic signaling. Curr. Biol. 27, 3796–3811.e5 (2017).

    Google Scholar 

  70. Carrier, Y. et al. Biased Cell Adhesion Organizes a Circuit for Visual Motion Integration. https://doi.org/10.1101/2023.12.11.571076 (2023).

  71. Osaka, J. et al. Complex Formation of Immunoglobulin Superfamily Molecules Side-IV and Beat-IIb Regulates Synaptic Specificity in the Drosophila Visual System. (2023) https://doi.org/10.1101/2023.03.27.534487.

  72. Zarin, A. A. et al. A transcription factor network coordinates attraction, repulsion, and adhesion combinatorially to control motor axon pathway selection. Neuron 81, 1297–1311 (2014).

    Google Scholar 

  73. Venner, A. et al. An inhibitory lateral hypothalamic-preoptic circuit mediates rapid arousals from sleep. Curr. Biol. 29, 4155–4168.e5 (2019).

    Google Scholar 

  74. O’Callaghan, E. K., Ballester Roig, M. N. & Mongrain, V. Cell adhesion molecules and sleep. Neurosci. Res 116, 29–38 (2017).

    Google Scholar 

  75. Zoghbi, H. Y. & Bear, M. F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, a009886–a009886 (2012).

    Google Scholar 

  76. Micai, M. et al. Prevalence of co-occurring conditions in children and adults with autism spectrum disorder: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 155, 105436 (2023).

    Google Scholar 

  77. Doldur-Balli, F. et al. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep. Med. Rev. 62, 101595 (2022).

    Google Scholar 

  78. Wang, Y. et al. The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. 19, 151 (2018).

    Google Scholar 

  79. Chen, S. et al. Light-dependent regulation of sleep and wake states by prokineticin 2 in zebrafish. Neuron 95, 153–168.e6 (2017).

    Google Scholar 

  80. Lee, D., Oikonomou, G. & Prober, D. Large-scale Analysis of Sleep in Zebrafish. BIO-PROTOCOL 12, (2022).

  81. Malita, A. et al. A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat. Metab. 4, 1532–1550 (2022).

    Google Scholar 

  82. Matsliah, A. et al. Codex: Connectome Data Explorer. (2023).

Download references

Acknowledgements

We thank David Raizen, Amita Sehgal, members of the Kayser Lab, members of the Raizen Lab, and members of the Penn Chronobiology and Sleep Institute for helpful discussions and input. NIH T32GM008076 (K.M.). NIH T32HL007953 (KM). NIH T32HL007713 (A.Z.). NIH R35HG011959 (A.C.). Fulbright Visiting Scholar Program—Postdoctoral Grant (FY-2017-TR-PD-07) (FDB). NIH P01HL160471 (A.I.P.). NIH R01HL143790 (S.F.G.). Daniel B. Burke Endowed Chair for Diabetes Research (S.F.A.G.). NIH DP2NS111996 (MSK). NIH R01NS120979 (M.S.K.). NIH R35NS137329 (M.S.K.). Linda Pechenik Montague Award (M.S.K.). Burroughs Wellcome Career Award for Medical Scientists (M.S.K.).

Author information

Authors and Affiliations

  1. Pharmacology Graduate Group, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Kyla Mace

  2. Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Kyla Mace, Amber Zimmerman, Erika Almeraya del Valle, Allan I. Pack & Matthew S. Kayser

  3. Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Amber Zimmerman, Fusun Doldur-Balli & Allan I. Pack

  4. Center for Spatial and Functional Genomics, Children’s Hospital of Pennsylvania, Philadelphia, PA, USA

    Amber Zimmerman, Alessandra Chesi & Struan F. A. Grant

  5. Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Alessandra Chesi

  6. Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Hayle Kim, Jeffrey B. Rosa & Matthew S. Kayser

  7. Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA

    Struan F. A. Grant

  8. Divisions of Human Genetics and Endocrinology and Diabetes, Children’s Hospital of Pennsylvania, Philadelphia, PA, USA

    Struan F. A. Grant

  9. Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA

    Struan F. A. Grant

  10. Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Matthew S. Kayser

Authors
  1. Kyla Mace
    View author publications

    Search author on:PubMed Google Scholar

  2. Amber Zimmerman
    View author publications

    Search author on:PubMed Google Scholar

  3. Alessandra Chesi
    View author publications

    Search author on:PubMed Google Scholar

  4. Fusun Doldur-Balli
    View author publications

    Search author on:PubMed Google Scholar

  5. Hayle Kim
    View author publications

    Search author on:PubMed Google Scholar

  6. Erika Almeraya del Valle
    View author publications

    Search author on:PubMed Google Scholar

  7. Jeffrey B. Rosa
    View author publications

    Search author on:PubMed Google Scholar

  8. Allan I. Pack
    View author publications

    Search author on:PubMed Google Scholar

  9. Struan F. A. Grant
    View author publications

    Search author on:PubMed Google Scholar

  10. Matthew S. Kayser
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: K.M., A.Z., A.C., A.I.P., S.F.A.G., M.S.K. Investigation: K.M., A.Z., A.C., F.D.B., H.K., E.A.D.V., J.R. Writing—Original Draft: K.M., M.S.K. Writing—Review and Editing: K.M., A.Z., A.C., F.D.B., H.K., E.A.D.V., J.R., A.I.P., S.F.A.G., M.S.K. Project Supervision and Funding: M.S.K.

Corresponding author

Correspondence to Matthew S. Kayser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Junhai Han and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Dataset 1

Supplementary Dataset 2

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mace, K., Zimmerman, A., Chesi, A. et al. Cross-species evidence for a developmental origin of adult hypersomnia with loss of synaptic adhesion molecules beat-Ia/CADM2. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68343-1

Download citation

  • Received: 08 July 2024

  • Accepted: 22 December 2025

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68343-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Sleep in health and disease

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research