Abstract
Idiopathic hypersomnia (IH) is a poorly understood sleep disorder characterized by excessive daytime sleepiness despite normal nighttime sleep. Combining human genomics with behavioral and mechanistic studies in fish and flies, we uncover a role for beat-Ia/CADM2, synaptic adhesion molecules of the immunoglobulin superfamily, in excessive sleepiness. Neuronal knockdown of Drosophila beat-Ia results in sleepy flies and loss of the vertebrate ortholog of beat-Ia, CADM2, results in sleepy fish. We delineate a developmental function for beat-Ia in synaptic elaboration of neuropeptide F (NPF) neurites projecting to the suboesophageal zone (SEZ) of the fly brain. Brain connectome and experimental evidence demonstrate these NPF outputs synapse onto a subpopulation of SEZ GABAergic neurons to stabilize arousal. NPF is the Drosophila homolog of vertebrate neuropeptide Y (NPY), and an NPY receptor agonist restores sleep to normal levels in zebrafish lacking CADM2. These findings point towards NPY modulation as a treatment target for human hypersomnia.
Similar content being viewed by others
Data availability
All data needed to evaluate the conclusions in the paper are present in Source Data and/or Supplementary Data files. Source data are provided with this paper.
References
Grandner, M. A. Sleep, health, and society. Sleep. Med. Clin. 15, 319–340 (2020).
Zamore, Z. & Veasey, S. C. Neural consequences of chronic sleep disruption. Trends Neurosci. 45, 678–691 (2022).
Lane, J. M. et al. Genetics of circadian rhythms and sleep in human health and disease. Nat. Rev. Genet. 24, 4–20 (2023).
Sehgal, A. & Mignot, E. Genetics of Sleep and Sleep Disorders. Cell 146, 194–207 (2011).
Chakravarti, L., Moscato, E. H. & Kayser, M. S. Unraveling the Neurobiology of Sleep and Sleep Disorders Using Drosophila. in Current Topics in Developmental Biology vol. 121 253–285 (Elsevier, 2017).
Donelson, N. C. & Sanyal, S. Use of Drosophila in the investigation of sleep disorders. Exp. Neurol. 274, 72–79 (2015).
Raizen, D., Mason, T. & Pack, A. Genetic basis for sleep regulation and sleep disorders. Semin Neurol. 26, 467–483 (2006).
Palermo, J. et al. Variant-to-gene mapping followed by cross-species genetic screening identifies GPI-anchor biosynthesis as a regulator of sleep. Sci. Adv. 9, eabq0844 (2023).
Gottlieb, D. J., O’Connor, G. T. & Wilk, J. B. Genome-wide association of sleep and circadian phenotypes. BMC Med. Genet. 8, S9 (2007).
Raizen, D. M. & Wu, M. N. Genome-wide association studies of sleep disorders. Chest 139, 446–452 (2011).
Trotti, L. M. Idiopathic hypersomnia. Sleep. Med. Clin. 12, 331–344 (2017).
Trotti, L. M. & Arnulf, I. Idiopathic hypersomnia and other hypersomnia syndromes. Neurotherapeutics 18, 20–31 (2021).
Arnulf, I., Leu-Semenescu, S. & Dodet, P. Precision medicine for idiopathic hypersomnia. Sleep. Med. Clin. 17, 379–398 (2022).
Sforza, E., Hupin, D. & Roche, F. Mononucleosis: a possible cause of idiopathic hypersomnia. Front. Neurol. 9, 922 (2018).
Landzberg, D. & Trotti, L. M. Is idiopathic hypersomnia a circadian rhythm disorder? Curr. Sleep Med. Rep. https://doi.org/10.1007/s40675-019-00154-x. (2019).
Materna, L. et al. Idiopathic hypersomnia patients revealed longer circadian period length in peripheral skin fibroblasts. Front. Neurol. 9, 424 (2018).
Rye, D. B. et al. Modulation of vigilance in the primary hypersomnias by endogenous enhancement of GABAA receptors. Sci. Transl. Med. 4, 161 151–161 151 (2012).
Ali, M., Auger, R. R., Slocumb, N. L. & Morgenthaler, T. I. Idiopathic hypersomnia: clinical features and response to treatment. J. Clin. Sleep. Med. 5, 562–568 (2009).
Bassetti, C. & Aldrich, M. S. Idiopathic hypersomnia. A series of 42 patients. Brain 120, 1423–1435 (1997).
Anderson, K. N., Pilsworth, S., Sharples, L. D., Smith, I. E. & Shneerson, J. M. Idiopathic hypersomnia: a study of 77 cases. Sleep 30, 1274–1281 (2007).
Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet 52, 8–16 (2020).
Cubeñas-Potts, C. & Corces, V. G. Topologically associating domains: an invariant framework or a dynamic scaffold? Nucleus 6, 430–434 (2015).
Way, G. P., Youngstrom, D. W., Hankenson, K. D., Greene, C. S. & Grant, S. F. Implicating candidate genes at GWAS signals by leveraging topologically associating domains. Eur. J. Hum. Genet. 25, 1286–1289 (2017).
Wang, H. et al. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun. 10, 3503 (2019).
Dashti, H. S. et al. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat. Commun. 12, 900 (2021).
Dashti, H. S. et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 10, 1100 (2019).
Tanida, K. et al. Genome-wide association study of idiopathic hypersomnia in a Japanese population. Sleep Biol. Rhythms https://doi.org/10.1007/s41105-021-00349-2. (2021).
Hu, Y. et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinforma. 12, 357 (2011).
Bazan, J. F. & Goodman, C. S. Modular structure of the Drosophila Beat protein. Curr. Biol. 7, R338–R339 (1997).
Pietri, T., Easley-Neal, C., Wilson, C. & Washbourne, P. Six cadm/synCAM genes are expressed in the nervous system of developing zebrafish. Dev. Dyn. 237, 233–246 (2008).
Frei, J. A. & Stoeckli, E. T. SynCAMs–from axon guidance to neurodevelopmental disorders. Mol. Cell. Neurosci. 81, 41–48 (2017).
Fambrough, D. & Goodman, C. S. The Drosophila beaten path gene encodes a novel secreted protein that regulates defasciculation at motor axon choice points. Cell 87, 1049–1058 (1996).
Cooper, J. M., Halter, K. A. & Prosser, R. A. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol. Sleep. Circadian Rhythms 5, 15–36 (2018).
Li, H. et al. Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development. eLife 6, e28111 (2017).
Siebert, M., Banovic, D., Goellner, B. & Aberle, H. Drosophila motor axons recognize and follow a sidestep-labeled substrate pathway to reach their target fields. Genes Dev. 23, 1052–1062 (2009).
Jong, S., Cavallo, J. A., Rios, C. D., Dworak, H. A. & Sink, H. Target recognition and synaptogenesis by motor axons: responses to the sidestep protein. Int. J. dev. neurosci. 23, 397–410 (2005).
Girard, F. et al. Chromatin immunoprecipitation reveals a novel role for the Drosophila Soxneuro transcription factor in axonal patterning. Dev. Biol. 299, 530–542 (2006).
Wiggin, T. D. et al. Covert sleep-related biological processes are revealed by probabilistic analysis in Drosophila. Proc. Natl. Acad. Sci. USA 117, 10024–10034 (2020).
Chowdhury, B., Abhilash, L., Ortega, A., Liu, S. & Shafer, O. Homeostatic control of deep sleep and molecular correlates of sleep pressure in Drosophila. eLife 12, e91355 (2023).
Niederkofler, V., Baeriswyl, T., Ott, R. & Stoeckli, E. T. Nectin-like molecules/SynCAMs are required for post-crossing commissural axon guidance. Development 137, 427–435 (2010).
Pellissier, F., Gerber, A., Bauer, C., Ballivet, M. & Ossipow, V. The adhesion molecule Necl-3/SynCAM-2 localizes to myelinated axons, binds to oligodendrocytes and promotes cell adhesion. BMC Neurosci. 8, 90 (2007).
Leung, L. C. et al. Neural signatures of sleep in zebrafish. Nature 571, 198–204 (2019).
Zhdanova, I. V. Sleep in zebrafish. Zebrafish 3, 215–226 (2006).
Zhdanova, I. V., Wang, S. Y., Leclair, O. U. & Danilova, N. P. Melatonin promotes sleep-like state in zebrafish. Brain Res. 903, 263–268 (2001).
Yokogawa, T. et al. Characterization of Sleep in Zebrafish and Insomnia in Hypocretin Receptor Mutants. PLoS Biol. 5, e277 (2007).
Kroll, F. et al. A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. eLife 10, e59683 (2021).
Aberle, H. Searching for guidance cues: follow the Sidestep trail. Fly 3, 270–273 (2009).
McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. Sig. 2004, pl6–pl6, (2004).
He, C., Yang, Y., Zhang, M., Price, J. L. & Zhao, Z. Regulation of sleep by neuropeptide Y-like system in Drosophila melanogaster. PLoS ONE 8, e74237 (2013).
Chung, B. Y. et al. Drosophila neuropeptide F signaling independently regulates feeding and sleep-wake behavior. Cell Rep. 19, 2441–2450 (2017).
He, C. et al. Regulation of circadian locomotor rhythm by neuropeptide Y-like system in Drosophila melanogaster. Insect Mol. Biol. 22, 376–388 (2013).
Ja, W. W. et al. Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA 104, 8253–8256 (2007).
Liu, Q., Liu, S., Kodama, L., Driscoll, M. R. & Wu, M. N. Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22, 2114–2123 (2012).
Pimentel, D. et al. Operation of a homeostatic sleep switch. Nature 536, 333–337 (2016).
Donlea, J. M., Thimgan, M. S., Suzuki, Y., Gottschalk, L. & Shaw, P. J. Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 332, 1571–1576 (2011).
Donlea, J. M. et al. Recurrent circuitry for balancing sleep need and sleep. Neuron 97, 378–389.e4 (2018).
Donlea, J. M., Pimentel, D. & Miesenböck, G. Neuronal machinery of sleep homeostasis in Drosophila. Neuron 81, 860–872 (2014).
Dorkenwald, S. et al. FlyWire: online community for whole-brain connectomics. Nat. Methods 19, 119–128 (2022).
Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature 634, 139–152 (2024).
BrainCircuits.io. https://braincircuits.io/ (2023).
Eckstein, N. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 187, 2574–2594.e23 (2024).
Rihel, J. et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327, 348–351 (2010).
Larhammar, D. & Salaneck, E. Molecular evolution of NPY receptor subtypes. Neuropeptides 38, 141–151 (2004).
Garczynski, S. F., Brown, M. R., Shen, P., Murray, T. F. & Crim, J. W. Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides 23, 773–780 (2002).
Park, C. et al. Structural basis of neuropeptide Y signaling through Y1 receptor. Nat. Commun. 13, 853 (2022).
Grandt, D. et al. Novel generation of hormone receptor specificity by amino terminal processing of peptide YY. Biochem. Biophys. Res. Commun. 186, 1299–1306 (1992).
Singh, C., Rihel, J. & Prober, D. A. Neuropeptide Y regulates sleep by modulating noradrenergic signaling. Curr. Biol. 27, 3796–3811.e5 (2017).
Carrier, Y. et al. Biased Cell Adhesion Organizes a Circuit for Visual Motion Integration. https://doi.org/10.1101/2023.12.11.571076 (2023).
Osaka, J. et al. Complex Formation of Immunoglobulin Superfamily Molecules Side-IV and Beat-IIb Regulates Synaptic Specificity in the Drosophila Visual System. (2023) https://doi.org/10.1101/2023.03.27.534487.
Zarin, A. A. et al. A transcription factor network coordinates attraction, repulsion, and adhesion combinatorially to control motor axon pathway selection. Neuron 81, 1297–1311 (2014).
Venner, A. et al. An inhibitory lateral hypothalamic-preoptic circuit mediates rapid arousals from sleep. Curr. Biol. 29, 4155–4168.e5 (2019).
O’Callaghan, E. K., Ballester Roig, M. N. & Mongrain, V. Cell adhesion molecules and sleep. Neurosci. Res 116, 29–38 (2017).
Zoghbi, H. Y. & Bear, M. F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, a009886–a009886 (2012).
Micai, M. et al. Prevalence of co-occurring conditions in children and adults with autism spectrum disorder: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 155, 105436 (2023).
Doldur-Balli, F. et al. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep. Med. Rev. 62, 101595 (2022).
Wang, Y. et al. The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. 19, 151 (2018).
Chen, S. et al. Light-dependent regulation of sleep and wake states by prokineticin 2 in zebrafish. Neuron 95, 153–168.e6 (2017).
Lee, D., Oikonomou, G. & Prober, D. Large-scale Analysis of Sleep in Zebrafish. BIO-PROTOCOL 12, (2022).
Malita, A. et al. A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat. Metab. 4, 1532–1550 (2022).
Matsliah, A. et al. Codex: Connectome Data Explorer. (2023).
Acknowledgements
We thank David Raizen, Amita Sehgal, members of the Kayser Lab, members of the Raizen Lab, and members of the Penn Chronobiology and Sleep Institute for helpful discussions and input. NIH T32GM008076 (K.M.). NIH T32HL007953 (KM). NIH T32HL007713 (A.Z.). NIH R35HG011959 (A.C.). Fulbright Visiting Scholar Program—Postdoctoral Grant (FY-2017-TR-PD-07) (FDB). NIH P01HL160471 (A.I.P.). NIH R01HL143790 (S.F.G.). Daniel B. Burke Endowed Chair for Diabetes Research (S.F.A.G.). NIH DP2NS111996 (MSK). NIH R01NS120979 (M.S.K.). NIH R35NS137329 (M.S.K.). Linda Pechenik Montague Award (M.S.K.). Burroughs Wellcome Career Award for Medical Scientists (M.S.K.).
Author information
Authors and Affiliations
Contributions
Conceptualization: K.M., A.Z., A.C., A.I.P., S.F.A.G., M.S.K. Investigation: K.M., A.Z., A.C., F.D.B., H.K., E.A.D.V., J.R. Writing—Original Draft: K.M., M.S.K. Writing—Review and Editing: K.M., A.Z., A.C., F.D.B., H.K., E.A.D.V., J.R., A.I.P., S.F.A.G., M.S.K. Project Supervision and Funding: M.S.K.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Junhai Han and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Mace, K., Zimmerman, A., Chesi, A. et al. Cross-species evidence for a developmental origin of adult hypersomnia with loss of synaptic adhesion molecules beat-Ia/CADM2. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68343-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68343-1


