Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Modeling tissue-specific Drosophila metabolism identifies high sugar diet-induced metabolic dysregulation in muscle at reaction and pathway levels
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 January 2026

Modeling tissue-specific Drosophila metabolism identifies high sugar diet-induced metabolic dysregulation in muscle at reaction and pathway levels

  • Sun Jin Moon1,
  • Yanhui Hu  ORCID: orcid.org/0000-0003-1494-14021,
  • Monika Dzieciatkowska  ORCID: orcid.org/0000-0002-9947-25202,
  • Ah-Ram Kim  ORCID: orcid.org/0000-0001-9597-67591,
  • John M. Asara  ORCID: orcid.org/0000-0001-7450-25893,4,
  • Angelo D’Alessandro  ORCID: orcid.org/0000-0002-2258-64902 &
  • …
  • Norbert Perrimon  ORCID: orcid.org/0000-0001-7542-472X1,5 

Nature Communications , Article number:  (2026) Cite this article

  • 3240 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemical networks
  • Biochemical reaction networks
  • Diabetes
  • Metabolomics
  • Systems analysis

Abstract

Individual tissues perform highly specialized metabolic functions to maintain whole-body metabolic homeostasis. Although Drosophila serves as a powerful model for studying human metabolic diseases, modeling tissue-specific metabolism has been limited in this organism. To address this gap, we reconstruct 32 tissue-specific genome-scale metabolic models (GEMs) by integrating a curated Drosophila metabolic network with pseudo-bulk single-nuclei transcriptomics data, revealing distinct metabolic network structures and subsystem coverage across tissues. We validate enriched pathways identified through tissue-specific GEMs, particularly in muscle and fat body, using metabolomics and pathway analysis. Moreover, to demonstrate the utility in disease modeling, we apply muscle-GEM to investigate high sugar diet (HSD)-induced metabolic dysregulation. Constraint-based semi-quantitative flux and sensitivity analyses identify altered NAD(H)-dependent reactions and distributed control of glycolytic flux, including GAPDH. This prediction is further validated through in vivo 13C-glucose isotope tracing study. Notably, decreased glycolytic flux, including GAPDH, is linked to increased redox modifications. Finally, our pathway-level flux analyses identify dysregulation in fructose metabolism. Together, this work establishes a quantitative framework for tissue-specific metabolic modeling in Drosophila, demonstrating its utility for identifying dysregulated reactions and pathways in muscle in response to HSD.

Similar content being viewed by others

Quantitative flux analysis in mammals

Article 01 July 2021

Time and dose selective glucose metabolism for glucose homeostasis and energy conversion in the liver

Article Open access 30 September 2024

Domeless receptor loss in fat body tissue reverts insulin resistance induced by a high-sugar diet in Drosophila melanogaster

Article Open access 05 February 2021

Data availability

All data generated in this study, including 13C-glucose isotope tracing, high-sugar-diet (HSD) metabolomics, regional metabolomics, and redox proteomics, are provided in the Source Data. Processed and analyzed data are provided in Supplementary Data. The protein mass spectrometry raw data have been deposited to the ProteomeXchange via the MassIVE with the dataset identifier MSV000100288. Source data are provided with this paper.

Code availability

MATLAB and R scripts used for reconstruction of genome-scale metabolic models and flux analyses are available on GitHub (https://github.com/sunjjmoon/FlyTissueGEMs). An achieved version of the code used in this study is available on Zenodo: https://doi.org/10.5281/zenodo.17684286115.

References

  1. Droujinine, I. A. & Perrimon, N. Interorgan communication pathways in physiology: focus on Drosophila. Annu. Rev. Genet. 50, 539–570 (2016).

    Google Scholar 

  2. Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nat. Metab. 1, 1177–1188 (2019).

    Google Scholar 

  3. Yilmaz, L. & Walhout, A. J. M. A Caenorhabditis elegans genome-scale metabolic network model. Cell Syst 2, 297–311 (2016).

    Google Scholar 

  4. Yilmaz, L. S. et al. Modeling tissue-relevant Caenorhabditis elegans metabolism at network, pathway, reaction, and metabolite levels. Mol. Syst. Biol. 16, 1–20 (2020).

    Google Scholar 

  5. Schultz, A. & Qutub, A. A. Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput. Biol. 12, 1–33 (2016).

    Google Scholar 

  6. Wang, Y., Eddy, J. A. & Price, N. D. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. 6, 1–16 (2012).

    Google Scholar 

  7. Agren, R. et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10, 1–13 (2014).

    Google Scholar 

  8. Agren, R. et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8, e1002518 (2012).

    Google Scholar 

  9. Metallo, C. M. & Vander Heiden, M. G. Understanding metabolic regulation and its influence on cell physiology. Mol. Cell 49, 388–398 (2013).

    Google Scholar 

  10. Jang, C. et al. Metabolite exchange between mammalian organs quantified in pigs resource. Cell Metab 30, 594–606 (2019).

    Google Scholar 

  11. Chatterjee, N. & Perrimon, N. What fuels the fly: energy metabolism in Drosophila and its application to the study of obesity and diabetes. Sci. Adv. 7, 1–15 (2021).

    Google Scholar 

  12. Ugur, B., Chen, K. & Bellen, H. J. Drosophila tools and assays for the study of human diseases. DMM Dis. Model. Mech. 9, 235–244 (2016).

    Google Scholar 

  13. Dam, E. et al. Sugar-induced obesity and insulin resistance are uncoupled from shortened survival in Drosophila. Cell Metab. 31, 710–725 (2020).

    Google Scholar 

  14. Musselman, L. P. et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 849, 842–849 (2011).

    Google Scholar 

  15. Parkhitko, A. A. et al. Downregulation of the tyrosine degradation pathway extends Drosophila lifespan. Elife 9, 1–27 (2020).

    Google Scholar 

  16. Kwon, Y. et al. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev. Cell 33, 36–46 (2015).

    Google Scholar 

  17. Schönborn, J. W., Jehrke, L., Mettler-Altmann, T. & Beller, M. FlySilico: flux balance modeling of Drosophila larval growth and resource allocation. Sci. Rep. 9, 1–16 (2019).

    Google Scholar 

  18. Cesur, M. F., Basile, A., Patil, K. R. & Çak, T. A new metabolic model of Drosophila melanogaster and the integrative analysis of Parkinson’s disease. Life Sci. Alliance 6, 1–21 (2023).

    Google Scholar 

  19. Wang, H. et al. Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proc. Natl. Acad. Sci. USA. 118, e2102344118 (2021).

    Google Scholar 

  20. D’Alessandro, A. et al. Omics markers of the red cell storage lesion and metabolic linkage. Blood Transfus 15, 137–144 (2017).

    Google Scholar 

  21. Jang, C., Chen, L. & Rabinowitz, J. D. Leading edge primer metabolomics and isotope tracing. Cell 173, 822–837 (2018).

    Google Scholar 

  22. Dong, W., Rawat, E. S., Stephanopoulos, G. & Abu-Remaileh, M. Isotope tracing in health and disease. Curr. Opin. Biotechnol. 76, 102739 (2022).

    Google Scholar 

  23. Antoniewicz, M. R. A guide to 13C metabolic flux analysis for the cancer biologist. Exp. Mol. Med. 50, 1–13 (2018).

    Google Scholar 

  24. Xiao, H. et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 180, 968–983.e24 (2020).

    Google Scholar 

  25. Jones, D. P. & Sies, H. The redox code. Antioxid. Redox Signal. 23, 734–746 (2015).

    Google Scholar 

  26. Talwar, D. et al. The GAPDH redox switch safeguards reductive capacity and enables survival of stressed tumour cells. Nat. Metab. 5, 660–676 (2023).

    Google Scholar 

  27. Gallogly, M. M. & Mieyal, J. J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol. 7, 381–391 (2007).

    Google Scholar 

  28. DeFronzo, R. A. & Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32, 157–163 (2009).

    Google Scholar 

  29. Gaster, M., Nehlin, J. O. & Minet, A. D. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: marker or maker of the diabetic phenotype. Arch. Physiol. Biochem. 118, 156–189 (2012).

    Google Scholar 

  30. Jensen, M. V. et al. Metabolic cycling in control of glucose-stimulated insulin secretion. Am. J. Physiol. - Endocrinol. Metab 295, 1287–1297 (2008).

    Google Scholar 

  31. Alfa, R. W. & Kim, S. K. Using Drosophila to discover mechanisms underlying type 2 diabetes. Co. Biol. 9, 365–376 (2016).

    Google Scholar 

  32. Na, J. et al. A Drosophila model of high sugar diet-induced cardiomyopathy. PLos Genet. 9, e1003175 (2013).

    Google Scholar 

  33. Randle, P. J., England, P. J. & Denton, R. M. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem. J. 117, 677–695 (1970).

    Google Scholar 

  34. Gaster, M. Reduced TCA flux in diabetic myotubes: a governing influence on the diabetic phenotype? Biochem. Biophys. Res. Commun. 387, 651–655 (2009).

    Google Scholar 

  35. Palanker, L., Tennessen, J. M., Lam, G. & Thummel, C. S. Drosophila HNF4 regulates lipid mobilization and β-oxidation. Cell Metab. 9, 228–239 (2009).

    Google Scholar 

  36. Richelle, A. et al. Model-based assessment of mammalian cell metabolic functionalities using omics data. Cell Reports Methods 1, 100040 (2021).

    Google Scholar 

  37. Miyamoto, T. & Amrein, H. Neuronal gluconeogenesis regulates systemic glucose homeostasis in Drosophila melanogaster article neuronal gluconeogenesis regulates systemic glucose homeostasis in Drosophila melanogaster. Curr. Biol. 29, 1263–1272.e5 (2019).

    Google Scholar 

  38. Chiappino-Pepe, A. & Hatzimanikatis, V. PhenoMapping: a protocol to map cellular phenotypes to metabolic bottlenecks, identify conditional essentiality, and curate metabolic models. STAR Protoc 2, 100280 (2021).

    Google Scholar 

  39. Stanway, R. R. et al. Genome-scale identification of essential metabolic processes for targeting the plasmodium liver stage. Cell 179, 1112–1128.e26 (2019).

    Google Scholar 

  40. Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N. & Namboodiri, A. M. A. N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007).

    Google Scholar 

  41. Enomoto, Y., Phan, N. T. A. N., Yamaguchi, M., Fukusaki, E. & Shimma, S. Mass spectrometric imaging of GABA in the Drosophila melanogaster adult head. Anal. Sci. 34, 1055–1059 (2018).

    Google Scholar 

  42. Ren, W. & Peng, Y. Betaine in inflammation: mechanistic aspects and applications. Front. Immunol. 9, 1–13 (2018).

    Google Scholar 

  43. Hadtstein, F. & Vrolijk, M. Vitamin B-6-induced neuropathy: exploring the mechanisms of pyridoxine toxicity. Adv. Nutr. 12, 1911–1929 (2021).

    Google Scholar 

  44. Liu, X., Kiss, I. & Lengyel, J. A. Identification of genes controlling Malpighian tubule and other epithelial morphogenesis in Drosophila melanogaster. Genetics 151, 685–695 (1999).

    Google Scholar 

  45. Yamauchi, T. et al. Gut bacterial species distinctively impact host purine metabolites during aging in Drosophila. iScience 23, 101477 (2020).

    Google Scholar 

  46. Chong, J. & Xia, J. Systems biology MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34, 4313–4314 (2018).

    Google Scholar 

  47. Vorontsov, I. E., Kulakovskiy, I. V. & Makeev, V. J. Jaccard index based similarity measure to compare transcription factor binding site models. algorithms Mol. Biol. 8, 1–11 (2013).

    Google Scholar 

  48. Ioffe, S. Improved consistent sampling, weighted minhash and L1 sketching. In 2010 IEEE International Conference on Data Mining 246–255 https://doi.org/10.1109/ICDM.2010.80 (2010).

  49. Saavedra, P. et al. REPTOR/CREBRF encode key regulators of muscle energy metabolism. Nat. Commun. 14, 4943 (2023).

    Google Scholar 

  50. Bilder, D., Ong, K., Hsi, T. C., Adiga, K. & Kim, J. Tumour–host interactions through the lens of Drosophila. Nat. Rev. Cancer 21, 687–700 (2021).

    Google Scholar 

  51. Graham, P. & Pick, L. Drosophila as a model for diabetes and diseases of insulin resistance. In Pick L, editor. Current Topics in Developmental Biology Vol. 121 (Elsevier Inc., 2017).

  52. Blatnik, M., Thorpe, S. R. & Baynes, J. W. Succination of proteins by fumarate: mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in diabetes. Diabetes 1126, 272–275 (2008).

    Google Scholar 

  53. Befroy, D. E. et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 56, 1376–1381 (2007).

    Google Scholar 

  54. Oberbach, A. et al. Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care 29, 895–900 (2006).

    Google Scholar 

  55. Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. & Shulman, G. I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350, 664–671 (2004).

    Google Scholar 

  56. Xiao, W., Wang, R. S., Handy, D. E. & Loscalzo, J. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxidants Redox Signal 28, 251–272 (2018).

    Google Scholar 

  57. Wu, J., Jin, Z., Zheng, H. & Yan, L. J. Sources and implications of NADH/NAD+ redox imbalance in diabetes and its complications. Diabetes, Metab. Syndr. Obes. 9, 145–153 (2016).

    Google Scholar 

  58. Lowell, B. B. & Shulman, G. I. Mitochondrial dysfunction and type 2 diabetes. Curr. Diab. Rep. 5, 177–183 (2005).

    Google Scholar 

  59. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Google Scholar 

  60. Reisz, J. A. et al. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. GLUT. Blood 128, e32–e42 (2016).

    Google Scholar 

  61. Yokota, T. et al. Systemic oxidative stress is associated with lower aerobic capacity and impaired skeletal muscle energy metabolism in patients withmetabolic syndrome. Diabetes Care 36, 1341–1346 (2013).

    Google Scholar 

  62. Henriksen, E. J., Diamond-Stanic, M. K. & Marchionne, E. M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med. 51, 993–999 (2011).

    Google Scholar 

  63. Wieder, C. et al. Pathway analysis in metabolomics: recommendations for the use of over-representation analysis. PLoS Comput. Biol. 17, 1–23 (2021).

    Google Scholar 

  64. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).

    Google Scholar 

  65. Daly, M. J. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Google Scholar 

  66. Dar, G. H. et al. GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain. Nat. Commun. 12, 1–15 (2021).

    Google Scholar 

  67. Argilés, J. M., Campos, N., Lopez-pedrosa, J. M., Rueda, R. & Rodriguez-mañas, L. Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. J. Am. Med. Dir. Assoc. 17, 789–796 (2016).

    Google Scholar 

  68. Shestov, A. A. et al. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. Elife 3, 1–18 (2014).

    Google Scholar 

  69. Peralta, D. et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163 (2015).

    Google Scholar 

  70. Samson, A. L. et al. Oxidation of an exposed methionine instigates the aggregation of glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 289, 26922–26936 (2014).

    Google Scholar 

  71. Helsley, R. N. et al. Tissue-specific fructose metabolism in obesity and diabetes. Curr. Diab. Rep. 20, 64 (2020).

    Google Scholar 

  72. Maser, D., Johnson, L. & Lee, C.-Y. Multiple forms of Drosophila Hexokinase. J. Biol. Chem. 10, 4673–4679 (1980).

    Google Scholar 

  73. Opdam, S. et al. A systematic evaluation of methods for tailoring genome-scale metabolic models. Cell Syst 4, 318–329.e6 (2017).

    Google Scholar 

  74. Hu, Y. et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12, 357 (2011).

    Google Scholar 

  75. Robinson, J. L. et al. An atlas of human metabolism. Sci. Signal. 13, 1–12 (2020).

    Google Scholar 

  76. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Google Scholar 

  77. Li, H. et al. Fly cell atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science (80-.) 375, 991 (2022).

    Google Scholar 

  78. Genomics, 10x. Should I calculate TPM, RPKM or FPKM, instead of counts for 10x Genomics data? vol. 000002525 9–10 https://kb.10xgenomics.com/s/article/115003684783-Should-I-calculate-TPM-RPKM-or-FPKM-instead-of-counts-for-10x-Genomics-data (2024).

  79. Richelle, A., Chiang, A. W. T., Kuo, C.-C. & Lewis, N. E. Increasing consensus of context-specific metabolic models by integrating data-inferred cell functions. PLoS Comput. Biol. 15, e1006867 (2019).

    Google Scholar 

  80. Tennessen, J. M., Barry, W. E., Cox, J. & Thummel, C. S. Methods for studying metabolism in Drosophila. Methods 68, 105–115 (2014).

    Google Scholar 

  81. Jouandin, P. et al. Lysosomal cystine mobilization shapes the response of TORC1 and tissue growth to fasting. Science 375, eabc4203 (2022).

    Google Scholar 

  82. Parkhitko, A. A. et al. A genetic model of methionine restriction extends Drosophila health- and lifespan. Proc. Natl. Acad. Sci. USA 118, e2110387118 (2021).

    Google Scholar 

  83. Matsushita, R. & Nishimura, T. Trehalose metabolism confers developmental robustness and stability in Drosophila by regulating glucose homeostasis. Commun. Biol. 3, 1–12 (2020).

    Google Scholar 

  84. Lewis, J. E. et al. Genome-scale modeling of NADPH-driven β-lapachone sensitization in head and neck squamous cell carcinoma. Antioxid. Redox Signal. 29, 7048 (2017).

    Google Scholar 

  85. Stein, K. T., Moon, S. J., Nguyen, A. N. & Sikes, H. D. Kinetic modeling of H2O2 dynamics in the mitochondria of HeLa cells. PLoS Comput. Biol. 16, 1–21 (2020).

    Google Scholar 

  86. Moon, S. J., Dong, W., Stephanopoulos, G. N. & Sikes, H. D. Oxidative pentose phosphate pathway and glucose anaplerosis support maintenance of mitochondrial NADPH pool under mitochondrial oxidative stress. Bioeng. Transl. Med. 5, 1–18 (2020).

    Google Scholar 

  87. Rajagopalan, P. T. R. et al. Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proc. Natl. Acad. Sci. USA. 99, 13481–13486 (2002).

    Google Scholar 

  88. Mdluli, K., Booth, M. P. S., Brady, R. L. & Rumsby, G. A preliminary account of the properties of recombinant human Glyoxylate reductase (GRHPR), LDHA and LDHB with glyoxylate, and their potential roles in its metabolism. Biochim. Biophys. Acta 1753, 209–216 (2005).

    Google Scholar 

  89. Ghosh, A. C., Tattikota, S. G., Liu, Y. & Comjean, A. Drosophila PDGF / VEGF signaling from muscles to hepatocyte-like cells protects against obesity. Elife 9, 1–29 (2020).

    Google Scholar 

  90. Wegener, G. Flying insects: model systems in exercise physiology. Experientia 52, 404–412 (1996).

    Google Scholar 

  91. Goody, M. F. & Henry, C. A. A need for NAD+ in muscle development, homeostasis, and aging. Skelet. Muscle 8, 1–14 (2018).

    Google Scholar 

  92. Augustin, H. & Partridge, L. Invertebrate models of age-related muscle degeneration. Biochim. Biophys. Acta - Gen. Subj. 1790, 1084–1094 (2009).

    Google Scholar 

  93. Hagen, J. L. et al. Skeletal muscle aging in F344BN F1-hybrid rats: I. Mitochondrial dysfunction contributes to the age-associated reduction in VO2max. J. Gerontol. - Ser. A Biol. Sci. Med. Sci. 59, 1099–1110 (2004).

    Google Scholar 

  94. Coquin, L., Feala, J. D., McCulloch, A. D. & Paternostro, G. Metabolomic and flux-balance analysis of age-related decline of hypoxia tolerance in Drosophila muscle tissue. Mol. Syst. Biol. 4, 1–13 (2008).

    Google Scholar 

  95. Orth, J. D., Thiele, I. & Palsson, B. Ø What is flux balance analysis? Nat. Publ. Gr. 28, 245–248 (2010).

    Google Scholar 

  96. Schiaffino, S., Reggiani, C., Akimoto, T. & Blaauw, B. Molecular mechanisms of skeletal muscle hypertrophy. J. Neuromuscul. Dis. 8, 169–183 (2021).

    Google Scholar 

  97. Meinild Lundby, A. K. et al. Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. Acta Physiol. 222, 1–14 (2018).

    Google Scholar 

  98. Gudmundsson, S. & Thiele, I. Computationally efficient flux variability analysis. BMC Bioinformatics 11, 2–4 (2010).

    Google Scholar 

  99. Megchelenbrink, W., Huynen, M. & Marchiori, E. optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks. PLoS ONE 9, e86587 (2014).

    Google Scholar 

  100. Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 1–13 (2010).

    Google Scholar 

  101. Bordel, S., Agren, R. & Nielsen, J. Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput. Biol. 6, 1–13 (2010).

    Google Scholar 

  102. Heinrich, R. & Rapoport, T. A. A Linear steady-state treatment of enzymatic chains: general properties, control and effector strength. Eur. J. Biochem. 42, 89–95 (1974).

    Google Scholar 

  103. Fell, D. A. Increasing the flux in metabolic pathways: a metabolic control analysis perspective. Biotechnol. Bioeng. 58, 121–124 (1998).

    Google Scholar 

  104. Yue, H. et al. Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: a case study of an NF-κB signalling pathway. Mol. Biosyst. 2, 640–649 (2006).

    Google Scholar 

  105. Beenakkers, A. M., Van Der Horst, D. J. & Marrewijk, W. J. A. Inset flight muscle metabolism. Insect Biochem. 14, 243–260 (1984).

    Google Scholar 

  106. Feala, J. D., Coquin, L., McCulloch, A. D. & Paternostro, G. Flexibility in energy metabolism supports hypoxia tolerance in Drosophila flight muscle: metabolomic and computational systems analysis. Mol. Syst. Biol. 3, 1–7 (2007).

    Google Scholar 

  107. Volkenhoff, A. et al. Glial glycolysis is essential for neuronal survival in Drosophila. Cell Metab 22, 437–447 (2015).

    Google Scholar 

  108. Su, X., Lu, W. & Rabinowitz, J. D. Metabolite spectral accuracy on orbitraps. Anal. Chem. 89, 5940–5948 (2017).

    Google Scholar 

  109. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Google Scholar 

  110. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Google Scholar 

  111. Ah-ram, K. et al. A Structure-guided kinase–transcription factor interactome atlas reveals docking landscapes of the kinome. Preprint at bioRxiv https://doi.org/10.1101/2025.10.10.681672 (2025).

  112. Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci 32, 1–13 (2023).

    Google Scholar 

  113. Parkhitko, A. A. et al. Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1 / dAhcyL2 extends health span and life span in Drosophila. Genes Dev 30, 1409–1422 (2016).

    Google Scholar 

  114. Cracan, V., Titov, D. V., Shen, H., Grabarek, Z. & Mootha, V. K. A genetically encoded tool for manipulation of NADP+/NADPH in living cells. Nat. Chem. Biol. 13, 1088–1095 (2017).

    Google Scholar 

  115. Moon, S. J. Modeling tissue-specific Drosophila metabolism identifies high sugar diet-induced metabolic dysregulation in muscle at reaction and pathway levels. https://doi.org/10.5281/zenodo.17684286 (2025).

Download references

Acknowledgements

We thank members of the Perrimon laboratory for useful discussions and experimental advice, including Dr. Stephanie Mohr for feedback on the manuscript. We also thank to the Research Computing Group at Harvard Medical School for access to the O2 High Performance Compute Cluster. We additionally thank Dr. Anush Chiappino-Pepe and Dr. Steven Marygold for valuable feedback on genome-scale metabolic modeling work; Dr. Jason Tennessen for valuable feedback on fly metabolism; Dr. Travis Nemkov for valuable feedback on metabolomics analysis; and Dr. Safak Yilmaz and Dr. Marian Walhout for valuable feedback on genome-scale metabolic models. A.K. was supported by Postdoctoral Fellowship Program (Nurturing Next-generation Researchers) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A14039622). The mass spectrometry work was partially funded by NIH grants 5P01CA120964 (J.M.A.) and 5P30CA006516 (J.M.A.). This research was supported by NIH/NIDDK 1R01DK136945, NIH NIAMS R01 AR057352, Cancer 509 Research UK (CGCATF-2021/100022) and the National Cancer Institute (1OT2 CA278685-01). N.P. is an investigator of Howard Hughes Medical Institute. This article is subject to HHMI’s Open Access to Publications policy. HHMI lab heads have previously granted a nonexclusive CC BY 4.0 license to the public and a sublicensable license to HHMI in their research articles. Pursuant to those licenses, the author-accepted manuscript of this article can be made freely available under a CC BY 4.0 license immediately upon publication.

Author information

Authors and Affiliations

  1. Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA

    Sun Jin Moon, Yanhui Hu, Ah-Ram Kim & Norbert Perrimon

  2. Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz, Aurora, CO, USA

    Monika Dzieciatkowska & Angelo D’Alessandro

  3. Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA

    John M. Asara

  4. Department of Medicine, Harvard Medical School, Boston, MA, USA

    John M. Asara

  5. Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA

    Norbert Perrimon

Authors
  1. Sun Jin Moon
    View author publications

    Search author on:PubMed Google Scholar

  2. Yanhui Hu
    View author publications

    Search author on:PubMed Google Scholar

  3. Monika Dzieciatkowska
    View author publications

    Search author on:PubMed Google Scholar

  4. Ah-Ram Kim
    View author publications

    Search author on:PubMed Google Scholar

  5. John M. Asara
    View author publications

    Search author on:PubMed Google Scholar

  6. Angelo D’Alessandro
    View author publications

    Search author on:PubMed Google Scholar

  7. Norbert Perrimon
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.J.M. and N.P. designed the study. Y.H. performed bioinformatics analyses related to the Fly Cell Atlas datasets. S.J.M. performed the computational analyses and follow-up experiments. S.J.M. and J.M.A. performed metabolomics and subsequent analyses. S.J.M., M.D., and A.D. performed redox proteomics and subsequent analyses. A.R.K. performed the AlphaFold structural analysis. N.P. supervised the work. S.J.M. and N.P. wrote the manuscript. S.J.M., Y.H., M.D., A.R.K., J.M.A., A.D., and N.P. reviewed and edited the manuscript.

Corresponding authors

Correspondence to Sun Jin Moon or Norbert Perrimon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks David James and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, S.J., Hu, Y., Dzieciatkowska, M. et al. Modeling tissue-specific Drosophila metabolism identifies high sugar diet-induced metabolic dysregulation in muscle at reaction and pathway levels. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68395-3

Download citation

  • Received: 25 April 2024

  • Accepted: 02 January 2026

  • Published: 19 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68395-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research