Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Global alluvial channel patterns
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Global alluvial channel patterns

  • Qiuqi Luo  ORCID: orcid.org/0000-0001-5396-70371,2,3,
  • Edward Park  ORCID: orcid.org/0000-0002-1299-17244,5,6,
  • Edgardo M. Latrubesse  ORCID: orcid.org/0000-0001-5592-302X7,
  • Xuehui Pi  ORCID: orcid.org/0000-0002-6764-64428,
  • Hongwei Fang  ORCID: orcid.org/0000-0002-8287-60941,
  • Yan Liu  ORCID: orcid.org/0000-0003-3197-93491,
  • Adam D. Switzer  ORCID: orcid.org/0000-0002-4352-78524,
  • Dongfeng Li  ORCID: orcid.org/0000-0003-0119-57979,
  • Wenhui Qiu  ORCID: orcid.org/0000-0002-9961-39281,
  • Chunmiao Zheng  ORCID: orcid.org/0000-0001-5839-13051,10,
  • Pan Liu  ORCID: orcid.org/0000-0002-3777-656111 &
  • …
  • Lian Feng  ORCID: orcid.org/0000-0002-4590-30223 

Nature Communications , Article number:  (2026) Cite this article

  • 1573 Accesses

  • 8 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Geomorphology
  • Hydrology

Abstract

Quantitative analysis of alluvial channel patterns is essential in fluvial science, as their morphology both reflects and influences river behavior through interactions with water and sediment regimes, landscape processes, and human interventions. However, a comprehensive global study to identify predominant channel patterns and their underlying mechanisms remains lacking. Here, we map global alluvial channel patterns using high-resolution satellite observations. Our results reveal a hidden dominance of anabranching channels that surprisingly constitute half (51%) of total reach length globally, exceeding meandering (24%), straight (18%), and braided (7%) channels. In non-mountainous settings, anabranching channels dominate most continents except Oceania. They are not confined to typical alluvial lowland systems, also comprising 50% of alluvial tracts in mountains. While anabranching is typically associated with gentle slopes and expansive floodplains, these conditions are not exclusive determinants. The prevalence of anabranching channels transforms fundamental perspectives on global river systems, posing challenges for the fluvial geomorphology community.

Similar content being viewed by others

Threshold constraints on the size, shape and stability of alluvial rivers

Article 03 May 2022

Hydromorphological evaluation of the river training impact on a multi-thread river system (Belá River, Carpathians, Slovakia)

Article Open access 18 March 2021

Satellites reveal hotspots of global river extent change

Article Open access 22 March 2023

Data availability

The global alluvial channel pattern (GACP) data in this study have been deposited in the Figshare database under accession code https://figshare.com/s/db4065c089d798f6177c. The SWORD river network database33 used in this study can be accessed at https://zenodo.org/record/3898569. The Global Surface Water Occurrence dataset31 is accessible through the Google Earth Engine at https://earthengine.google.com/. The Global Unconsolidated Sediments Map database (GUM)37 is available at https://doi.org/10.1594/PANGAEA.884822, and the Global Mountain Biodiversity Assessment (GMBA) Mountain Inventory v235 can be accessed at https://www.earthenv.org/mountains. The GLAKES68 is available through the link https://doi.org/10.5281/zenodo.7016548. The GAIA dataset69 can be accessed at http://data.ess.tsinghua.edu.cn. Source data are provided with this paper.

Code availability

The Python code developed for the alluvial channel pattern is available via Figshare at https://figshare.com/s/db4065c089d798f6177c.

References

  1. Schumm, S. A. Patterns of alluvial rivers. Annu. Rev. Earth Planet. Sci. 13, 5–27 (1985).

    Google Scholar 

  2. Wu, Q. et al. Satellites reveal hotspots of global river extent change. Nat. Commun. 14, 1587 (2023).

    Google Scholar 

  3. Fryirs, K. A. River sensitivity: a lost foundation concept in fluvial geomorphology. Earth Surf. Process. Landf. 42, 55–70 (2017).

    Google Scholar 

  4. Mård, J., Di Baldassarre, G. & Mazzoleni, M. Nighttime light data reveal how flood protection shapes human proximity to rivers. Sci. Adv. 4, eaar5779 (2018).

    Google Scholar 

  5. Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).

    Google Scholar 

  6. Leopold, L. B. & Wolman, M. G. River channel patterns: braided, meandering, and straight. U.S. Geol. Surv. Prof. Pap. 282-B, 39–85 (1957).

  7. Drury, G. Relation of morphology to runoff frequency. In Water, Soil, and Man (ed. Chorley, R. J.) 418–430 (Methuen, London, 1969).

  8. Schumm, S. A. The Fluvial System (New York, Wiley, 1977).

  9. Miall, A. D. A review of the braided-river depositional environment. Earth-Sci. Rev. 13, 1–62 (1977).

    Google Scholar 

  10. Rust, B. R. A classification of alluvial channel systems. Canadian Society of Petroleum Geologists Memoir 5, 187–198 (1977).

  11. Alabyan, A. M. & Chalov, R. S. Types of river channel patterns and their natural controls. Earth Surf. Process. Landf. 23, 467–474 (1998).

    Google Scholar 

  12. Nanson, G. C. & Knighton, A. D. Anabranching rivers: their cause, character and classification. Earth Surf. Process. Landf. 21, 217–239 (1996).

    Google Scholar 

  13. Tooth, S. & Nanson, G. C. Anabranching rivers on the Northern Plains of arid central Australia. Geomorphology 29, 211–233 (1999).

    Google Scholar 

  14. Nanson, G. C. Anabranching and anastomosing rivers. In Treatise on Geomorphology (Second Edition) (ed. Shroder, J. F.) 6, 544–564 (Academic Press, 2022).

  15. Brice, J. C. Planform properties of meandering rivers. In River Meandering (ed. Elliott, C. M.) 1–15 (ASCE, 1984).

  16. Smith, D. G. & Smith, N. D. Sedimentation in anastomosed river systems; examples from alluvial valleys near Banff, Alberta. J. Sediment. Res. 50, 157–164 (1980).

    Google Scholar 

  17. Smith, D. G. Anastomosed fluvial deposits: modern examples from Western Canada. In Modern and Ancient Fluvial Systems (eds Collinson, J. & Lewin, J.) 6, 155–168 (Blackwell Scientific, 1983).

  18. Carson, M. Observations on the meandering-braided river transition, the Canterbury plains, New Zealand: part two. N.Z. Geographer 40, 89–99 (1984).

    Google Scholar 

  19. David Knighton, A. & Nanson, G. C. Anastomosis and the continuum of channel pattern. Earth Surf. Process. Landf. 18, 613–625 (1993).

    Google Scholar 

  20. Huang, H. Q. & Nanson, G. C. Hydraulic geometry and maximum flow efficiency as products of the principle of least action. Earth Surf. Process. Landf. 25, 1–16 (2000).

    Google Scholar 

  21. Huang, H. Q. & Nanson, G. C. Why some alluvial rivers develop an anabranching pattern. Water Resour. Res. 43, W07441 (2007).

  22. Latrubesse, E. M. Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology 101, 130–145 (2008).

    Google Scholar 

  23. Latrubesse, E. M. Large rivers, megafans and other Quaternary avulsive fluvial systems: a potential “who’s who” in the geological record. Earth-Sci. Rev. 146, 1–30 (2015).

    Google Scholar 

  24. Tooth, S., Jansen, J. D., Nanson, G. C., Coulthard, T. J. & Pietsch, T. Riparian vegetation and the late Holocene development of an anabranching river: magela Creek, northern Australia. Geol. Soc. Am. Bull. 120, 1021–1035 (2008).

    Google Scholar 

  25. Nyberg, B., Sayre, R. & Luijendijk, E. Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022. Hydrol. Earth Syst. Sci. 28, 1653–1663 (2024).

    Google Scholar 

  26. Gautier, E. et al. Fifty-year dynamics of the Lena River islands (Russia): spatio-temporal pattern of large periglacial anabranching river and influence of climate change. Sci. Total Environ. 783, 147020 (2021).

    Google Scholar 

  27. Jarriel, T., Swartz, J. & Passalacqua, P. Global rates and patterns of channel migration in river deltas. Proc. Natl. Acad. Sci. USA 118, e2103178118 (2021).

    Google Scholar 

  28. Ielpi, A., Lapôtre, M. G., Finotello, A. & Roy-Léveillée, P. Large sinuous rivers are slowing down in a warming Arctic. Nat. Clim. Change 13, 375–381 (2023).

    Google Scholar 

  29. Wang, B. et al. Remote sensing of broad-scale controls on large river anabranching. Remote Sens. Environ. 281, 113243 (2022).

    Google Scholar 

  30. Nyberg, B., Henstra, G., Gawthorpe, R. L., Ravnås, R. & Ahokas, J. Global scale analysis on the extent of river channel belts. Nat. Commun. 14, 2163 (2023).

    Google Scholar 

  31. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Google Scholar 

  32. Altenau, E. H. et al. The surface water and ocean topography (SWOT) mission river database (SWORD): a global river network for satellite data products. Water Resour. Res. 57, e2021WR030054 (2021).

    Google Scholar 

  33. Yamazaki, D. et al. MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).

    Google Scholar 

  34. Caldwell, R. L. et al. A global delta dataset and the environmental variables that predict delta formation on marine coastlines. Earth Surf. Dyn. 7, 773–787 (2019).

    Google Scholar 

  35. Snethlage, M. A. et al. A hierarchical inventory of the world’s mountains for global comparative mountain science. Sci. Data 9, 149 (2022).

    Google Scholar 

  36. Snethlage, M. A. et al. GMBA Mountain Inventory v2. GMBA-EarthEnv. https://doi.org/10.48601/earthenv-t9k2-1407 (2022).

  37. Börker, J., Hartmann, J., Amann, T. & Romero-Mujalli, G. Terrestrial sediments of the earth: development of a global unconsolidated sediments map database (GUM). Geochem. Geophys. Geosyst. 19, 997–1024 (2018).

    Google Scholar 

  38. Montgomery, D. R. & Buffington, J. M. Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 109, 596–611 (1997).

    Google Scholar 

  39. Wohl, E. E. & Merritt, D. M. Bedrock channel morphology. Geol. Soc. Am. Bull. 113, 1205–1212 (2001).

    Google Scholar 

  40. Bujalesky, G. G. Holocene coastal evolution of Tierra del Fuego, Argentina. In Quaternary of South America and Antarctic Peninsula (ed. Rabassa, J.) 11, 247–282 (A.A. Balkema, 1998).

  41. Roccati, A., Faccini, F., Luino, F., De Graff, J. V. & Turconi, L. Morphological changes and human impact in the Entella River floodplain (Northern Italy) from the 17th century. Catena 182, 104122 (2019).

    Google Scholar 

  42. Horsak, M., Bojková, J., Zahrádková, S., Omesová, M. & Helešic, J. Impact of reservoirs and channelization on lowland river macroinvertebrates: a case study from Central Europe. Limnologica 39, 140–151 (2009).

    Google Scholar 

  43. Ciszewski, D. & Czajka, A. Human-induced sedimentation patterns of a channelized lowland river. Earth Surf. Process. Landf. 40, 783–795 (2015).

    Google Scholar 

  44. Ashmore, P. Morphology and dynamics of braided rivers. Treatise Geomorphol. 9, 289–312 (2013).

    Google Scholar 

  45. Lunt, I. & Bridge, J. Evolution and deposits of a gravelly braid bar, Sagavanirktok River, Alaska. Sedimentology 51, 415–432 (2004).

    Google Scholar 

  46. Thorne, C. R. et al. Direct measurements of secondary currents in a meandering sand-bed river. Nature 315, 746–747 (1985).

    Google Scholar 

  47. Seminara, G. Meanders. J. Fluid Mech. 554, 271–297 (2006).

    Google Scholar 

  48. Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

    Google Scholar 

  49. Ielpi, A., Lapôtre, M. G., Gibling, M. R. & Boyce, C. K. The impact of vegetation on meandering rivers. Nat. Rev. Earth Environ. 3, 165–178 (2022).

    Google Scholar 

  50. Wu, C. et al. Lowland river sinuosity on Earth and Mars set by the pace of meandering and avulsion. Nat. Geosci. 16, 747–753 (2023).

    Google Scholar 

  51. Nanson, G. C. & Huang, H. Q. Least action principle, equilibrium states, iterative adjustment and the stability of alluvial channels. Earth Surf. Process. Landf. 33, 923–942 (2008).

    Google Scholar 

  52. Kleinhans, M. G., de Haas, T., Lavooi, E. & Makaske, B. Evaluating competing hypotheses for the origin and dynamics of river anastomosis. Earth Surf. Process. Landf. 37, 1337–1351 (2012).

    Google Scholar 

  53. Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth-Sci. Rev. 98, 171–200 (2010).

    Google Scholar 

  54. Long, D. G. F. Architecture and depositional style of fluvial systems before land plants: a comparison of Precambrian, early Paleozoic, and modern river deposits. In From River to Rock Record. (eds Davidson, S. K., Leleu, S. & North, C.) 97, 37–61 (SEPM, 2011).

  55. Gibling, M. R. & Davies, N. S. Palaeozoic landscapes shaped by plant evolution. Nat. Geosci. 5, 99–105 (2012).

    Google Scholar 

  56. Blum, M., Martin, J., Milliken, K. & Garvin, M. Paleovalley systems: insights from Quaternary analogs and experiments. Earth-Sci. Rev. 116, 128–169 (2013).

    Google Scholar 

  57. Jansen, J. D. & Nanson, G. C. Functional relationships between vegetation, channel morphology, and flow efficiency in an alluvial (anabranching) river. J. Geophys. Res.: Earth Surf. 115 (2010).

  58. Jones, J., Collins, A., Naden, P. & Sear, D. The relationship between fine sediment and macrophytes in rivers. River Res. Appl. 28, 1006–1018 (2012).

    Google Scholar 

  59. Repasch, M. et al. Fluvial organic carbon cycling regulated by sediment transit time and mineral protection. Nat. Geosci. 14, 842–848 (2021).

    Google Scholar 

  60. Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711–730 (2017).

    Google Scholar 

  61. Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851 (2022).

    Google Scholar 

  62. Tananaev, N. & Lotsari, E. Defrosting northern catchments: fluvial effects of permafrost degradation. Earth-Sci. Rev. 228, 103996 (2022).

    Google Scholar 

  63. Chalov, S. & Prokopeva, K. Sedimentation and erosion patterns of the Lena River anabranching channel. Water 14, 3845 (2022).

    Google Scholar 

  64. Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588 (2018).

    Google Scholar 

  65. Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Google Scholar 

  66. Whittemore, A. et al. A participatory science approach to expanding instream infrastructure inventories. Earth’s. Future 8, e2020EF001558 (2020).

    Google Scholar 

  67. Tessler, Z. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

    Google Scholar 

  68. Pi, X. et al. Mapping global lake dynamics reveals the emerging roles of small lakes. Nat. Commun. 13, 5777 (2022).

    Google Scholar 

  69. Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 236, 111510 (2020).

    Google Scholar 

  70. Scherer, D., Schwatke, C., Dettmering, D. & Seitz, F. ICESat-2 river surface slope (IRIS): a global reach-scale water surface slope dataset. Sci. Data 10, 359 (2023).

    Google Scholar 

  71. Lin, P. et al. Global estimates of reach-level bankfull river width leveraging big data geospatial analysis. Geophys. Res. Lett. 47, e2019GL086405 (2020).

    Google Scholar 

  72. Sun, X. et al. Changes in global fluvial sediment concentrations and fluxes between 1985 and 2020. Nat. Sustain. 8, 142–151 (2025).

  73. Pavelsky, T. M. & Smith, L. C. RivWidth: a software tool for the calculation of river widths from remotely sensed imagery. IEEE Geosci. Remote Sens. Lett. 5, 70–73 (2008).

    Google Scholar 

  74. Yang, X., Pavelsky, T. M., Allen, G. H. & Donchyts, G. RivWidthCloud: an automated Google Earth Engine algorithm for river width extraction from remotely sensed imagery. IEEE Geosci. Remote Sens. Lett. 17, 217–221 (2019).

    Google Scholar 

  75. Van den Berg, J. H. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12, 259–279 (1995).

    Google Scholar 

  76. Thorne, C. R., Russell, A. P. & Alam, M. K. Planform Pattern and Channel Evolution of the Brahmaputra River, Bangladesh. Vol. 75, 257–276 (Geological Society, London, Special Publications, 1993).

  77. Morón, S., Edmonds, D. & Amos, K. The role of floodplain width and alluvial bar growth as a precursor for the formation of anabranching rivers. Geomorphology 278, 78–90 (2017).

    Google Scholar 

  78. Leli, I. T., Stevaux, J. C. & Assine, M. L. Origin, evolution, and sedimentary records of islands in large anabranching tropical rivers: the case of the Upper Paraná River, Brazil. Geomorphology 358, 107118 (2020).

    Google Scholar 

  79. Ramonell, C. G., Amsler, M. L. & Toniolo, H. Shifting modes of the Paraná River thalweg in its middle/lower reach. Zeitschrift für Geomorphologie Supplementband. 129, 129–142 (2002).

  80. Latrubesse, E. M. & Franzinelli, E. The late Quaternary evolution of the Negro River, Amazon, Brazil: implications for island and floodplain formation in large anabranching tropical systems. Geomorphology 70, 372–397 (2005).

    Google Scholar 

  81. Mertes, L. A., Dunne, T. & Martinelli, L. A. Channel-floodplain geomorphology along the Solimões-Amazon river, Brazil. Geol. Soc. Am. Bull. 108, 1089–1107 (1996).

    Google Scholar 

  82. Sarma, J. Fluvial process and morphology of the Brahmaputra River in Assam, India. Geomorphology 70, 226–256 (2005).

    Google Scholar 

  83. Latrubesse, E. M., Amsler, M. L., de Morais, R. P. & Aquino, S. The geomorphologic response of a large pristine alluvial river to tremendous deforestation in the South American tropics: the case of the Araguaia River. Geomorphology 113, 239–252 (2009).

    Google Scholar 

  84. Ashworth, P. J. & Lewin, J. How do big rivers come to be different? Earth-Sci. Rev. 114, 84–107 (2012).

    Google Scholar 

  85. Lahiri, S. K. & Sinha, R. Tectonic controls on the morphodynamics of the Brahmaputra River system in the upper Assam valley, India. Geomorphology 169, 74–85 (2012).

    Google Scholar 

  86. Lewin, J. & Ashworth, P. J. Defining large river channel patterns: alluvial exchange and plurality. Geomorphology 215, 83–98 (2014).

    Google Scholar 

  87. Lewin, J. & Ashworth, P. J. The negative relief of large river floodplains. Earth-Sci. Rev. 129, 1–23 (2014).

    Google Scholar 

  88. Zhu, Z. & Woodcock, C. E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 118, 83–94 (2012).

    Google Scholar 

  89. Foga, S. et al. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 194, 379–390 (2017).

    Google Scholar 

  90. Pal, M. & Mather, P. M. Support vector machines for classification in remote sensing. Int. J. remote Sens. 26, 1007–1011 (2005).

    Google Scholar 

  91. Awad, M. & Khanna, R. Support Vector Machines. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers 39–66 (Apress, 2015).

  92. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  93. Brierley, G. J. & Fryirs, K. A. Geomorphology and River Management: Applications of the River Styles Framework (Blackwell, 2005).

  94. Moody-Stuart, M. High-and low-sinuosity stream deposits, with examples from the Devonian of Spitsbergen. J. Sediment. Res. 36, 1102–1117 (1966).

    Google Scholar 

  95. Horacio, J. River sinuosity index: geomorphological characterisation (CIREF & Wetlands International European Association, 2014).

  96. Church, M. Pattern of instability in a wandering gravel bed channel. In Modern and Ancient Fluvial Systems (eds Collinson, J. D. & Lewin, L.) 6, 169–180 (Blackwell Scientific, 1983).

  97. Desloges, J. R. & Church, M. A. Wandering gravel-bed rivers. Can. Geographer/Le. Géographe Canadien 33, 360–364 (1989).

    Google Scholar 

  98. Makaske, B. Anastomosing rivers: a review of their classification, origin and sedimentary products. Earth-Sci. Rev. 53, 149–196 (2001).

    Google Scholar 

  99. Galloway, W. E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In Deltas, Models for Exploration (ed. Broussard, M. L.) 87–98 (Houston Geological Society, 1975).

  100. Finotello, A. et al. Three-dimensional flow structures and morphodynamic evolution of microtidal meandering channels. Water Resour. Res. 56, e2020WR027822 (2020).

    Google Scholar 

  101. Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).

    Google Scholar 

  102. Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).

    Google Scholar 

  103. Lehner, B. & Grill, G. Hydrobasins: Global Watershed Boundaries And Sub-basin Delineations Derived From Hydrosheds Data At 15 Second Resolution—Technical Documentation Version 1. C. https://data.hydrosheds.org/file/technical-documentation/HydroBASINS_TechDoc_v1c.pdf (2014).

  104. Naskar, R. & Bhattacharya, H. Neotectonic and climatic control on channel evolution in the Himalayan foot-hill, northern West Bengal, India–A case study. J. Earth Syst. Sci. 132, 2 (2022).

    Google Scholar 

  105. Eaton, B., Millar, R. G. & Davidson, S. Channel patterns: braided, anabranching, and single-thread. Geomorphology 120, 353–364 (2010).

    Google Scholar 

  106. Parker, G. On the cause and characteristic scales of meandering and braiding in rivers. J. Fluid Mech. 76, 457–480 (1976).

    Google Scholar 

  107. Lane, E. A Study of the Shape of Channels Formed by Natural Streams Flowing in Erodible Material. Missouri River Division Sediment Series No. 9. (US Army Engineer Division, Missouri River, Corps of Engineers, Omaha, NE, 1957).

  108. Bledsoe, B. P. & Watson, C. C. Logistic analysis of channel pattern thresholds: meandering, braiding, and incising. Geomorphology 38, 281–300 (2001).

    Google Scholar 

  109. Słowik, M. The formation of an anabranching planform in a sandy floodplain by increased flows and sediment load. Earth Surf. Process. Landf. 43, 623–638 (2018).

    Google Scholar 

Download references

Acknowledgements

We thank Google Earth Engine for providing the Global Surface Water Occurrence dataset and the data processing resources. L.F. was supported by the National Natural Science Foundation of China (grant nos. 42425604 and 42271322), the National Key Research and Development Program of China (grant no. 2022YFC3201802), the Natural Science Foundation of Guangdong Province (2023B1515120061), and Shenzhen Science and Technology Program (KCXFZ20240903093659003). E.P. was supported by various grants from the Ministry of Education, Singapore, under its Academic Research #Tier 1 [RG142/22], #Tier 1 [2021-T1-001-056], #Tier 2 [MOE-T2EP402A20-0001], #Tier 2 [MOE-T2EP50222-0007], Tier3 Climate Transformation Programme - MOE-MOET32022-0006, NIE AcRF - RI 10/22 EP and the Earth Observatory of Singapore (EOS) via its funding from the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centres of Excellence.

Author information

Authors and Affiliations

  1. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China

    Qiuqi Luo, Hongwei Fang, Yan Liu, Wenhui Qiu & Chunmiao Zheng

  2. Aerospace Information Research Institute, Henan Academy of Sciences, Zhengzhou, China

    Qiuqi Luo

  3. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China

    Qiuqi Luo & Lian Feng

  4. National Institute of Education, Nanyang Technological University, Singapore, Singapore

    Edward Park & Adam D. Switzer

  5. Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University, Singapore, Singapore

    Edward Park

  6. Center for Climate Change and Environmental Health, Nanyang Technological University, Singapore, Singapore

    Edward Park

  7. Graduate Program in Environmental Sciences (CIAMB), Federal University of Goiás-UFG, Campus II, Goiania, GO, 74690-900, Brazil

    Edgardo M. Latrubesse

  8. College of Surveying and Geo-Informatics, Tongji University, Shanghai, China

    Xuehui Pi

  9. Key Laboratory for Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, China

    Dongfeng Li

  10. School of the Environment and Sustainable Engineering, Eastern Institute of Technology, Ningbo, China

    Chunmiao Zheng

  11. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China

    Pan Liu

Authors
  1. Qiuqi Luo
    View author publications

    Search author on:PubMed Google Scholar

  2. Edward Park
    View author publications

    Search author on:PubMed Google Scholar

  3. Edgardo M. Latrubesse
    View author publications

    Search author on:PubMed Google Scholar

  4. Xuehui Pi
    View author publications

    Search author on:PubMed Google Scholar

  5. Hongwei Fang
    View author publications

    Search author on:PubMed Google Scholar

  6. Yan Liu
    View author publications

    Search author on:PubMed Google Scholar

  7. Adam D. Switzer
    View author publications

    Search author on:PubMed Google Scholar

  8. Dongfeng Li
    View author publications

    Search author on:PubMed Google Scholar

  9. Wenhui Qiu
    View author publications

    Search author on:PubMed Google Scholar

  10. Chunmiao Zheng
    View author publications

    Search author on:PubMed Google Scholar

  11. Pan Liu
    View author publications

    Search author on:PubMed Google Scholar

  12. Lian Feng
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Q.L.: methodology, data processing and analysis, results interpretation, writing and reviewing. E.P.: conceptualization, methodology, results interpretation, writing and reviewing. E.M.L.: conceptualization, research hypothesis, methodology, results interpretation, writing and reviewing. L.F.: conceptualization, methodology, funding and supervision, results interpretation, writing and reviewing. X.P., H.F., Y.L., A.D.S., D.L., W.Q., C.Z., and P.L. participated in interpreting the results and refining the manuscript.

Corresponding authors

Correspondence to Edward Park or Lian Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Bo Wang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Park, E., Latrubesse, E.M. et al. Global alluvial channel patterns. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68569-z

Download citation

  • Received: 29 July 2024

  • Accepted: 09 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68569-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing