Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
MiRNAs shape mouse age-independent tissue adaptation to spaceflight via ECM and developmental pathways
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

MiRNAs shape mouse age-independent tissue adaptation to spaceflight via ECM and developmental pathways

  • Friederike Grandke  ORCID: orcid.org/0000-0001-6185-14721,2 na1,
  • Shusruto Rishik1 na1,
  • Viktoria Wagner  ORCID: orcid.org/0000-0002-1957-06581,3,
  • Annika Engel  ORCID: orcid.org/0000-0001-5570-31151,
  • Nicole Ludwig4,
  • Kruti Calcuttawala3,
  • Fabian Kern  ORCID: orcid.org/0000-0002-8223-37501,2,
  • Verena Keller1,5,
  • Marcin Krawczyk5,
  • Louis Stodieck6,
  • Virginia Ferguson  ORCID: orcid.org/0000-0002-8448-44067,
  • Amanda Roberts8,
  • Eckart Meese4,
  • Nicholas Schaum3,
  • Steven Quake9,10,11,
  • Tony Wyss-Coray  ORCID: orcid.org/0000-0001-5893-08313,12,13,14 &
  • …
  • Andreas Keller  ORCID: orcid.org/0000-0002-5361-08951,2,15 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell biology
  • Computational biology and bioinformatics
  • Gene regulation

Abstract

As human space exploration accelerates, understanding the organism-wide molecular effects of longer spaceflight in mammals becomes increasingly critical. Non-coding RNAs like miRNAs are key to regulating this landscape. We thus analyze 686 small RNA samples of female mice from 13 solid organs at 3 and 8 months of age, after at least 3 weeks on the International Space Station and compare them to earth-bound controls. We observe significant spaceflight effects in systemic tissue remodeling pathways along the Fat-Liver-Pancreas axis and in heart, brain, spleen and thymus. The MIR-17/92 and MIR-1/133 families drive distinct molecular changes through specific gene targeting. Age-dependent changes, smaller in magnitude compared to age-independent changes, primarily involve tissue remodeling through MIR-8, MIR-154 and MIR-15 families in mesenteric adipose tissue, pancreas, and diaphragm. Our findings provide evidence on how spaceflight regulates mammalian gene expression in preparation for interplanetary spaceflight.

Data availability

The raw and processed miRNA data generated in this study have been deposited in the GEO database under accession code GSE294046. The raw and processed mRNA data generated in this study have been deposited in the GEO database under accession code GSE295428. Furthermore, the mRNA and miRNA data have been deposited in the NASE OSDR database under accessions OSD-904, OSD-905, OSD-906, OSD-907, OSD-908, OSD-909, OSD-910, OSD-911, OSD-912, OSD-913, OSD-914, OSD-915, OSD-916. Source data are provided with this paper.

Code availability

The code used to create the figures (based on count data or the provided Supplementary Data) is available from GitHub83.

References

  1. Jones, H. W. The recent large reduction in space launch cost. 48th International Conference on Environmental Systems https://ntrs.nasa.gov/citations/20200001093 (2018).

  2. Demontis, G. C. et al. Human pathophysiological adaptations to the space environment. Front. Physiol. 8, 547 (2017).

    Google Scholar 

  3. Stratis, D., Trudel, G., Rocheleau, L., Pelchat, M. & Laneuville, O. The transcriptome response of astronaut leukocytes to long missions aboard the International Space Station reveals immune modulation. Front. Immunol. 14, 1171103 (2023).

    Google Scholar 

  4. Flores, G. et al. Deep space habitation: establishing a sustainable human presence on the moon and beyond. 2021 IEEE Aerospace Conference (50100), 1–7 (2021).

  5. Garrett-Bakelman, F. E. et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science 364 https://doi.org/10.1126/science.aau8650 (2019).

  6. Overbey, E. G. et al. The Space Omics and Medical Atlas (SOMA) and international astronaut bio bank. Nature 632, 1145–1154 (2024).

    Google Scholar 

  7. Muratani, M. Cell-free RNA analysis of plasma samples collected from six astronauts in JAXA Cell-Free Epigenome (CFE) Study. Sci. Rep. 12, 19024 (2022).

  8. Husna, N. et al. Release of CD36-associated cell-free mitochondrial DNA and RNA as a hallmark of space environment response. Nat. Commun. 15, 4814 (2024).

    Google Scholar 

  9. Schmidt, M. A., Schmidt, C. M., Hubbard, R. M. & Mason, C. E. Why personalized medicine is the frontier of medicine and performance for humans in space. N. Space 8, 63–76 (2020).

    Google Scholar 

  10. Jones, C. W. et al. Molecular and physiological changes in the SpaceX Inspiration4 civilian crew. Nature 632, 1155–1164 (2024).

    Google Scholar 

  11. Overbey, E. G. et al. Collection of biospecimens from the inspiration4 mission establishes the standards for the space omics and medical atlas (SOMA). Nat. Commun. 15, 4964 (2024).

    Google Scholar 

  12. McGeary, S. E. et al. The biochemical basis of microRNA targeting efficacy. Science 366, eaav1741 (2019).

    Google Scholar 

  13. Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Google Scholar 

  14. Rishik, S., Hirsch, P., Grandke, F., Fehlmann, T. & Keller, A. miRNATissueAtlas 2025: an update to the uniformly processed and annotated human and mouse non-coding RNA tissue atlas. Nucleic Acids Res. 53, D129–d137 (2025).

    Google Scholar 

  15. Beheshti, A., Ray, S., Fogle, H., Berrios, D. & Costes, S. V. A microRNA signature and TGF-β1 response were identified as the key master regulators for spaceflight response. PLOS One 13, e0199621 (2018).

    Google Scholar 

  16. Malkani, S. et al. Circulating miRNA spaceflight signature reveals targets for countermeasure development. Cell Rep. 33, 108448 (2020).

    Google Scholar 

  17. Kinser, H. E. & Pincus, Z. MicroRNAs as modulators of longevity and the aging process. Hum. Genet. 139, 291–308 (2020).

    Google Scholar 

  18. Wagner, V. et al. Characterizing expression changes in noncoding RNAs during aging and heterochronic parabiosis across mouse tissues. Nat. Biotechnol. 42, 109–118 (2024).

    Google Scholar 

  19. Telonis, A. G. et al. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res. 45, 2973–2985 (2017).

    Google Scholar 

  20. Capri, M. et al. Long-term human spaceflight and inflammaging: does it promote aging?. Ageing Res. Rev. 87, 101909 (2023).

    Google Scholar 

  21. Vernice, N. A., Meydan, C., Afshinnekoo, E. & Mason, C. E. Long-term spaceflight and the cardiovascular system. Precis. Clin. Med. 3, 284–291 (2020).

    Google Scholar 

  22. Murgia, M. et al. Spaceflight on the ISS changed the skeletal muscle proteome of two astronauts. npj Microgravity 10, 60 (2024).

    Google Scholar 

  23. Bisserier, M. et al. Emerging role of exosomal long non-coding RNAs in spaceflight-associated risks in astronauts. Front. Genet. 12, 812188 (2021).

    Google Scholar 

  24. Bai, H., Zhang, T., Wang, J., Hua, J. & Wei, W. Identification of novel biomarkers of heavy ion exposure: Proteins, miRNAs and tRNA-derived fragments in serum. Acta Astronaut. 186, 329–336 (2021).

    Google Scholar 

  25. Wang, Y.-P. & Li, K.-B. Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. BMC Genomics 10, 218 (2009).

    Google Scholar 

  26. Skoufos, G. et al. TarBase-v9.0 extends experimentally supported miRNA–gene interactions to cell-types and virally encoded miRNAs. Nucleic Acids Res. 52, D304–D310 (2024).

    Google Scholar 

  27. Cui, S. et al. miRTarBase 2025: updates to the collection of experimentally validated microRNA-target interactions. Nucleic Acids Res. 53, D147–d156 (2025).

    Google Scholar 

  28. Morgan, J. L. et al. Effects of housing density in five inbred strains of mice. PLOS ONE 9, e90012 (2014).

    Google Scholar 

  29. Toth, L. A. The influence of the cage environment on rodent physiology and behavior: implications for reproducibility of pre-clinical rodent research. Exp. Neurol. 270, 72–77 (2015).

    Google Scholar 

  30. Ziemann, A. E. et al. The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 139, 1012–1021 (2009).

    Google Scholar 

  31. Elkon, D., Fechner, R. E., Homzie, M. J., Baker, D. G. & Constable, W. C. Response of mouse kidney to hyperthermia: pathology and temperature-dependence of injury. Arch. Pathol. Lab Med. 104, 153–158 (1980).

    Google Scholar 

  32. Davis, T. et al. How are cell and tissue structure and function influenced by gravity and what are the gravity perception mechanisms?. npj Microgravity 10, 16 (2024).

    Google Scholar 

  33. Hughson, R. L. et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am. J. Physiol. Heart Circ. Physiol. 310, H628–H638 (2016).

    Google Scholar 

  34. Tobin, B. W., Uchakin, P. N. & Leeper-Woodford, S. K. Insulin secretion and sensitivity in space flight: Diabetogenic effects. Nutrition 18, 842–848 (2002).

    Google Scholar 

  35. Tao, C. et al. Adipocyte miR-200b/a/429 ablation in mice leads to high-fat-diet-induced obesity. Oncotarget 7, 67796–67807 (2016).

    Google Scholar 

  36. Hilton, C. et al. MicroRNA-196a links human body fat distribution to adipose tissue extracellular matrix composition. EBioMedicine 44, 467–475 (2019).

    Google Scholar 

  37. Proshchina, A. E., Krivova, Y. S. & Saveliev, S. C. Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission). Life Sci. Space Res. 7, 22–26 (2015).

    Google Scholar 

  38. Safa, A. et al. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed. Pharmacother. 132, 110903 (2020).

    Google Scholar 

  39. McNeill, E. M. et al. The conserved microRNA miR-34 regulates synaptogenesis via coordination of distinct mechanisms in presynaptic and postsynaptic cells. Nat. Commun. 11, 1092 (2020).

    Google Scholar 

  40. Li, W. et al. MiR-1/133 attenuates cardiomyocyte apoptosis and electrical remodeling in mice with viral myocarditis. Cardiol. J. 27, 285–294 (2020).

    Google Scholar 

  41. Wang, Q. et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc. Natl. Acad. Sci. 105, 2889–2894 (2008).

    Google Scholar 

  42. Tian, L. et al. Curcumin represses mouse 3T3-L1 cell adipogenic differentiation via inhibiting miR-17-5p and stimulating the Wnt signalling pathway effector Tcf7l2. Cell Death Dis. 8, e2559 (2018).

    Google Scholar 

  43. Yang Loureiro, Z. et al. Wnt signaling preserves progenitor cell multipotency during adipose tissue development. Nat. Metab. 5, 1014–1028 (2023).

    Google Scholar 

  44. Wang, R. et al. Human microRNA (miR-20b-5p) modulates Alzheimer’s disease pathways and neuronal function, and a specific polymorphism close to the MIR20B gene influences Alzheimer’s biomarkers. Mol. Psychiatry 27, 1256–1273 (2022).

    Google Scholar 

  45. Amidfar, M., Askari, G. & Kim, Y.-K. Association of metabolic dysfunction with cognitive decline and Alzheimer’s disease: a review of metabolomic evidence. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 128, 110848 (2024).

    Google Scholar 

  46. Liao, K. et al. Critical roles of the miR-17∼92 family in thymocyte development, leukemogenesis, and autoimmunity. Cell Rep. 43, 114261 (2024).

    Google Scholar 

  47. McDonald, J. T. et al. Space radiation damage rescued by inhibition of key spaceflight associated miRNAs. Nat. Commun. 15, 4825 (2024).

    Google Scholar 

  48. Kumar, V., Soni, U. K., Maurya, V. K., Singh, K. & Jha, R. K. Integrin beta8 (ITGB8) activates VAV-RAC1 signaling via FAK in the acquisition of endometrial epithelial cell receptivity for blastocyst implantation. Sci. Rep. 7, 1885 (2017).

    Google Scholar 

  49. Ponferrada, V. G. et al. CRIM1 complexes with ß-catenin and cadherins, stabilizes cell-cell junctions and is critical for neural morphogenesis. PLOS One 7, e32635 (2012).

    Google Scholar 

  50. Zhao, Y. et al. Protein-truncating variants in BSN are associated with severe adult-onset obesity, type 2 diabetes and fatty liver disease. Nat. Genet. 56, 579–584 (2024).

    Google Scholar 

  51. Dharan, R. et al. Tetraspanin 4 stabilizes membrane swellings and facilitates their maturation into migrasomes. Nat. Commun. 14, 1037 (2023).

    Google Scholar 

  52. Van Vlierberghe, P. et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia 25, 130–134 (2011).

    Google Scholar 

  53. Van Vlierberghe, P. et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat. Genet. 42, 338–342 (2010).

    Google Scholar 

  54. Lemaire, M. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat. Genet. 45, 531–536 (2013).

    Google Scholar 

  55. Stewart-Ornstein, J. et al. p53 dynamics vary between tissues and are linked with radiation sensitivity. Nat. Commun. 12, 898 (2021).

    Google Scholar 

  56. Trümbach, D. & Prakash, N. The conserved miR-8/miR-200 microRNA family and their role in invertebrate and vertebrate neurogenesis. Cell Tissue Res. 359, 161–177 (2015).

    Google Scholar 

  57. Peng, C. et al. A Unilateral Negative Feedback Loop Between <em>miR-200</em> microRNAs and Sox2/E2F3 Controls Neural Progenitor Cell-Cycle Exit and Differentiation. J. Neurosci. 32, 13292 (2012).

    Google Scholar 

  58. Li, Z. et al. LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway. J. Cachexia Sarcopenia Muscle 10, 391–410 (2019).

    Google Scholar 

  59. Guo, S. et al. Functional significance and therapeutic potential of miR-15a mimic in pancreatic ductal adenocarcinoma. Mol. Ther. Nucleic Acids 19, 228–239 (2020).

    Google Scholar 

  60. Zhou, J., Qie, S., Fang, H. & Xi, J. MiR-487a-3p suppresses the malignant development of pancreatic cancer by targeting SMAD7. Exp. Mol. Pathol. 116, 104489 (2020).

    Google Scholar 

  61. Jiang, Z. et al. N(6)-methyladenosine-mediated miR-380-3p maturation and upregulation promotes cancer aggressiveness in pancreatic cancer. Bioengineered 13, 14460–14471 (2022).

    Google Scholar 

  62. Hickey, K. L. et al. Proteome census upon nutrient stress reveals Golgiphagy membrane receptors. Nature 623, 167–174 (2023).

    Google Scholar 

  63. Watson, R. J., Dyson, P. J. & McMahon, J. Multiple c-myb transcript cap sites are variously utilized in cells of mouse haemopoietic origin. EMBO J. 6, 1643–1651 (1987).

    Google Scholar 

  64. Oishi, K., Aramaki, M. & Nakajima, K. Mutually repressive interaction between Brn1/2 and Rorb contributes to the establishment of neocortical layer 2/3 and layer 4. Proc. Natl. Acad. Sci. 113, 3371–3376 (2016).

    Google Scholar 

  65. Dufresne, S. S. et al. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles. Am. J. Physiol. Cell Physiol. 310, C663–C672 (2016).

    Google Scholar 

  66. Ma, G. et al. The p53-miR17 family-Rankl axis bridges liver-bone communication. Mol. Ther. 33, 631–648 (2025).

    Google Scholar 

  67. Sullivan, R. P. et al. MicroRNA-15/16 antagonizes Myb to control NK cell maturation. J. Immunol. 195, 2806–2817 (2015).

    Google Scholar 

  68. Engel, A. et al. A spatio-temporal brain miRNA expression atlas identifies sex-independent age-related microglial driven miR-155-5p increase. Nat. Commun. 16, 4588 (2025).

    Google Scholar 

  69. Amrhein, V., Greenland, S. & McShane, B. Scientists rise up against statistical significance. Nature 567, 305–307 (2019).

    Google Scholar 

  70. Halsey, L. G. The reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum?. Biol. Lett. 15, 20190174 (2019).

    Google Scholar 

  71. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).

    Google Scholar 

  72. Fehlmann, T. et al. miRMaster 2.0: multi-species non-coding RNA sequencing analyses at scale. Nucleic Acids Res. 49, W397–w408 (2021).

    Google Scholar 

  73. Clarke, A. lexanderW. et al. MirGeneDB 3.0: improved taxonomic sampling, uniform nomenclature of novel conserved microRNA families and updated covariance models. Nucleic Acids Res. 53, D116–D128 (2025).

    Google Scholar 

  74. Crowell, H. L. et al. muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data. Nat. Commun. 11, 6077 (2020).

    Google Scholar 

  75. Aparicio-Puerta, E. et al. miEAA 2023: updates, new functional microRNA sets and improved enrichment visualizations. Nucleic Acids Res. 51, W319–w325 (2023).

    Google Scholar 

  76. Huang, H.-Y. et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA–target interactions. Nucleic Acids Res. 50, D222–D230 (2022).

    Google Scholar 

  77. Cui, S. et al. miRTarBase 2025: updates to the collection of experimentally validated microRNA–target interactions. Nucleic Acids Res. 53, D147–D156 (2025).

    Google Scholar 

  78. Sticht, C., De La Torre, C., Parveen, A. & Gretz, N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 13, e0206239 (2018).

    Google Scholar 

  79. Xu, S. et al. Using clusterProfiler to characterize multiomics data. Nat. Protoc. 19, 3292–3320 (2024).

    Google Scholar 

  80. Greene, D., Richardson, S. & Turro, E. ontologyX: a suite of R packages for working with ontological data. Bioinformatics 33, 1104–1106 (2017).

    Google Scholar 

  81. Gu, Z. & Hübschmann, D. SimplifyEnrichment: a bioconductor package for clustering and visualizing functional enrichment results. Genomics Proteomics Bioinformatics 21, 190–202 (2023).

    Google Scholar 

  82. Gerstner, N. et al. GeneTrail 3: advanced high-throughput enrichment analysis. Nucleic Acids Res. 48, W515–w520 (2020).

    Google Scholar 

  83. Grandke et al. MiRNAs shape mouse age-independent tissue adaptation to spaceflight via ECM and developmental pathways (Code). GitHub https://doi.org/10.5281/zenodo.17989911 (2025).

Download references

Acknowledgements

We thank all members of the Wyss-Coray and Meese labs, as well as the Keller lab, for their feedback and support. This study is partially funded by the Michael J. Fox Foundation and the Schaller-Nikolich Foundation. We acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG, project number 469073465: Compute- und Storage Cluster). For the Development of the software pipeline used to process the single-cell data, we are supported by funds from the EU (Project 101057548-EPIVINF).

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. These authors contributed equally: Friederike Grandke, Shusruto Rishik.

Authors and Affiliations

  1. Clinical Bioinformatics, Saarland University, Saarbrücken, Germany

    Friederike Grandke, Shusruto Rishik, Viktoria Wagner, Annika Engel, Fabian Kern, Verena Keller & Andreas Keller

  2. Helmholtz Institute for Pharmaceutical Research Saar (HIPS), Saarbrücken, Germany

    Friederike Grandke, Fabian Kern & Andreas Keller

  3. Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA

    Viktoria Wagner, Kruti Calcuttawala, Nicholas Schaum & Tony Wyss-Coray

  4. Department of Human Genetics, Saarland University, Homburg, Germany

    Nicole Ludwig & Eckart Meese

  5. Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany

    Verena Keller & Marcin Krawczyk

  6. BioServe Space Technologies, Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO, USA

    Louis Stodieck

  7. Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO, USA

    Virginia Ferguson

  8. Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, USA

    Amanda Roberts

  9. Chan Zuckerberg Biohub, San Francisco, CA, USA

    Steven Quake

  10. Department of Bioengineering, Stanford University, Stanford, CA, USA

    Steven Quake

  11. Department of Applied Physics, Stanford University, Stanford, CA, USA

    Steven Quake

  12. Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA

    Tony Wyss-Coray

  13. Paul F. Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA

    Tony Wyss-Coray

  14. Stanford University, The Knight Initiative for Brain Resilience, Stanford, CA, USA

    Tony Wyss-Coray

  15. PharmaScienceHub, Saarland University, Saarbrücken, Germany

    Andreas Keller

Authors
  1. Friederike Grandke
    View author publications

    Search author on:PubMed Google Scholar

  2. Shusruto Rishik
    View author publications

    Search author on:PubMed Google Scholar

  3. Viktoria Wagner
    View author publications

    Search author on:PubMed Google Scholar

  4. Annika Engel
    View author publications

    Search author on:PubMed Google Scholar

  5. Nicole Ludwig
    View author publications

    Search author on:PubMed Google Scholar

  6. Kruti Calcuttawala
    View author publications

    Search author on:PubMed Google Scholar

  7. Fabian Kern
    View author publications

    Search author on:PubMed Google Scholar

  8. Verena Keller
    View author publications

    Search author on:PubMed Google Scholar

  9. Marcin Krawczyk
    View author publications

    Search author on:PubMed Google Scholar

  10. Louis Stodieck
    View author publications

    Search author on:PubMed Google Scholar

  11. Virginia Ferguson
    View author publications

    Search author on:PubMed Google Scholar

  12. Amanda Roberts
    View author publications

    Search author on:PubMed Google Scholar

  13. Eckart Meese
    View author publications

    Search author on:PubMed Google Scholar

  14. Nicholas Schaum
    View author publications

    Search author on:PubMed Google Scholar

  15. Steven Quake
    View author publications

    Search author on:PubMed Google Scholar

  16. Tony Wyss-Coray
    View author publications

    Search author on:PubMed Google Scholar

  17. Andreas Keller
    View author publications

    Search author on:PubMed Google Scholar

Contributions

F.G., S.R., A.E., and A.K. performed computational analysis and/or primary data processing. F.G., S.R., A.E., V.W., N.S., V.K., and A.K. wrote the manuscript with input from all authors. F.K., L.S., V.F., E.M., N.S., S.Q., T.W.-C. and A.K. organized the study. A.R., N.S., and K.C. were involved in sample collection. V.W., N.L., and M.K. performed the Sequencing preparation and the Sequencing.

Corresponding author

Correspondence to Andreas Keller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Afshin Beheshti and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Supplementary Data 9

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grandke, F., Rishik, S., Wagner, V. et al. MiRNAs shape mouse age-independent tissue adaptation to spaceflight via ECM and developmental pathways. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68737-1

Download citation

  • Received: 11 June 2025

  • Accepted: 15 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68737-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing