Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
An absolute quantification atlas of small non-coding RNAs across diverse mammalian tissues and cell lines
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

An absolute quantification atlas of small non-coding RNAs across diverse mammalian tissues and cell lines

  • Wen Xiao  (肖稳)1 na1,
  • Yuli Zheng  (郑玉丽)1 na1,
  • Hongdao Zhang  (张宏道)  ORCID: orcid.org/0000-0003-2390-04501 na1,
  • Beiying Xu  (徐蓓英)1 na1,
  • Ruiwen Zhang  (张瑞雯)1 &
  • …
  • Ligang Wu  (吴立刚)  ORCID: orcid.org/0000-0003-4010-91181 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Genetic databases
  • RNA sequencing
  • Small RNAs

Abstract

The low quantitative accuracy of conventional small noncoding RNA sequencing (sncRNA-seq) methods due to extensive ligation bias commonly limits functional investigation of microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs). Here, we develop 4NBoost, a single-tube sncRNA-seq protocol designed to minimize bias in the estimated absolute quantification of miRNA and piRNA transcripts through the incorporation of quantitative exogenous RNA spike-ins. With 4NBoost, we profile sncRNA expression across 20 murine tissues, 18 macaque tissues, and 24 widely used cell lines, as well as 4 Arabidopsis tissues, to establish a comprehensive quantitative reference atlas. Compared with existing small RNA databases, our data reveal substantial biases in miRNA abundance, strand selection, and tissue-specific expression at both individual and family levels. To further extend its utility, we employ machine learning to model and correct biases in conventional datasets, effectively recovering ground truth transcript abundances. All 4NBoost data and the accompanying bias-correction model are freely available via SmRNAQuant (http://wulg-lab.sibcb.ac.cn/SmRNAQuant/), a web-based repository for exploring sncRNA expression. Together, the 4NBoost, bias-correction model, and SmRNAQuant provide powerful resources to advance sncRNA research.

Data availability

The deep-sequencing data have been deposited at the National Center for Biotechnology Information NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) database under accession number GSE279145. The following publicly available datasets were used: K562 AQ-seq data from GSE158025; K562 TruSeq data from GSE102497; HCT116 AQ-seq data from GSE230544; HCT116 TruSeq data from GSE180613 and GSE189908; HEK293T and Hela AQ-seq data from GSE123627; HEK293T and Hela TruSeq data from GSE57295; HEK293T IsoSeek data from PRJNA867189. Source data are provided with this paper.

References

  1. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Google Scholar 

  2. Lu, T. X. & Rothenberg, M. E. MicroRNA. J. Allergy Clin. Immunol. 141, 1202–1207 (2018).

    Google Scholar 

  3. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    Google Scholar 

  4. Li, X., Peng, J. & Yi, C. The epitranscriptome of small non-coding RNAs. Noncod. RNA Res 6, 167–173 (2021).

    Google Scholar 

  5. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    Google Scholar 

  6. Shang, R. et al. microRNAs in action: biogenesis, function and regulation. Nat. Rev. Genet. 24, 816–833 (2023).

    Google Scholar 

  7. Diener, C., Keller, A. & Meese, E. The miRNA-target interactions: an underestimated intricacy. Nucleic Acids Res. 52, 1544–1557 (2024).

    Google Scholar 

  8. Stefani, G. & Slack, F. J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 9, 219–230 (2008).

    Google Scholar 

  9. Hu, J. F. et al. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat. Biotechnol. 39, 978–988 (2021).

    Google Scholar 

  10. Wang, H. et al. CPA-seq reveals small ncRNAs with methylated nucleosides and diverse termini. Cell Discov. 7, 25 (2021).

    Google Scholar 

  11. Park, J. et al. tRNA-derived small RNAs: novel epigenetic regulators. Cancers (Basel) 12, 2773 (2020).

    Google Scholar 

  12. Chen, Q. et al. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem. Sci. 46, 790–804 (2021).

    Google Scholar 

  13. Shi, J. et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat. Cell Biol. 23, 424–436 (2021).

    Google Scholar 

  14. Chu, C. et al. A sequence of 28S rRNA-derived small RNAs is enriched in mature sperm and various somatic tissues and possibly associates with inflammation. J. Mol. Cell Biol. 9, 256–259 (2017).

    Google Scholar 

  15. Dard-Dascot, C. et al. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics 19, 118 (2018).

    Google Scholar 

  16. Yang, Q. et al. Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat. Commun. 10, 3389 (2019).

    Google Scholar 

  17. Maguire, S. & Guan, S. Rolling circle reverse transcription enables high fidelity nanopore sequencing of small RNA. PLoS ONE 17, e0275471 (2022).

    Google Scholar 

  18. Barberan-Soler, S. et al. Decreasing miRNA sequencing bias using a single adapter and circularization approach. Genome Biol. 19, 105 (2018).

    Google Scholar 

  19. Sterling, C. H., Veksler-Lublinsky, I. & Ambros, V. An efficient and sensitive method for preparing cDNA libraries from scarce biological samples. Nucleic Acids Res. 43, e1 (2015).

    Google Scholar 

  20. Masotti, A. et al. Quantification of small non-coding RNAs allows an accurate comparison of miRNA expression profiles. J. Biomed. Biotechnol. 2009, 659028 (2009).

    Google Scholar 

  21. Zhou, L. et al. Small RNA transcriptome investigation based on next-generation sequencing technology. J. Genet. Genomics 38, 505–513 (2011).

    Google Scholar 

  22. Khamina, K. et al. A microRNA next-generation-sequencing discovery assay (miND) for genome-scale analysis and absolute quantitation of circulating microRNA biomarkers. Int. J. Mol. Sci. 23, 1226 (2022).

    Google Scholar 

  23. Pfeffer, S., Lagos-Quintana, M. & Tuschl, T. Cloning of small RNA molecules. Curr. Protoc. Mol. Biol. Chapter 26, Unit 26 4 (2005).

    Google Scholar 

  24. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Google Scholar 

  25. Viollet, S. et al. T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis. BMC Biotechnol. 11, 72 (2011).

    Google Scholar 

  26. Lau, N. C. et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Google Scholar 

  27. Git, A. et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16, 991–1006 (2010).

    Google Scholar 

  28. Linsen, S. E. et al. Limitations and possibilities of small RNA digital gene expression profiling. Nat. Methods 6, 474–476 (2009).

    Google Scholar 

  29. Sorefan, K. et al. Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence 3, 4 (2012).

    Google Scholar 

  30. Zhuang, F. et al. Structural bias in T4 RNA ligase-mediated 3’-adapter ligation. Nucleic Acids Res. 40, e54 (2012).

    Google Scholar 

  31. Raabe, C. A. et al. Biases in small RNA deep sequencing data. Nucleic Acids Res. 42, 1414–1426 (2014).

    Google Scholar 

  32. Kim, H. et al. Bias-minimized quantification of microRNA reveals widespread alternative processing and 3’ end modification. Nucleic Acids Res. 47, 2630–2640 (2019).

    Google Scholar 

  33. van Eijndhoven, M. A. J. et al. IsoSeek for unbiased and UMI-informed sequencing of miRNAs from low input samples at single-nucleotide resolution. STAR Protoc. 4, 102645 (2023).

    Google Scholar 

  34. Belair, C. D. et al. High-throughput, efficient, and unbiased capture of small RNAs from low-input samples for sequencing. Sci. Rep. 9, 2262 (2019).

    Google Scholar 

  35. Giraldez, M. D. et al. Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat. Biotechnol. 36, 746–757 (2018).

    Google Scholar 

  36. Nandakumar, J. & Shuman, S. How an RNA ligase discriminates RNA versus DNA damage. Mol. Cell 16, 211–221 (2004).

    Google Scholar 

  37. Munafo, D. B. & Robb, G. B. Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA 16, 2537–2552 (2010).

    Google Scholar 

  38. van Dijk, E. L., Eleftheriou, E. & Thermes, C. Improving small RNA-seq: less bias and better detection of 2’-O-methyl RNAs. J. Vis. Exp. https://doi.org/10.3791/60056 (2019).

  39. Maguire, S., Lohman, G. J. S. & Guan, S. A low-bias and sensitive small RNA library preparation method using randomized splint ligation. Nucleic Acids Res 48, e80 (2020).

    Google Scholar 

  40. Oesinghaus, L. et al. Quantitative design of cell type-specific mRNA stability from microRNA expression data. Preprint at https://www.biorxiv.org/content/10.1101/2024.10.28.620728v1.full.pdf.

  41. Kataruka, S. et al. Physiologically relevant miRNAs in mammalian oocytes are rare and highly abundant. EMBO Rep. 23, e53514 (2022).

    Google Scholar 

  42. Kataruka, S. et al. MicroRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes. Nucleic Acids Res. 48, 8050–8062 (2020).

    Google Scholar 

  43. Mullokandov, G. et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat. Methods 9, 840–846 (2012).

    Google Scholar 

  44. Brown, B. D. et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat. Biotechnol. 25, 1457–1467 (2007).

    Google Scholar 

  45. Bissels, U. et al. Absolute quantification of microRNAs by using a universal reference. RNA 15, 2375–2384 (2009).

    Google Scholar 

  46. Rose, S. A. et al. A microRNA expression and regulatory element activity atlas of the mouse immune system. Nat. Immunol. 22, 914–927 (2021).

    Google Scholar 

  47. Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347–359 (2014).

    Google Scholar 

  48. Cui, Y. et al. miRNA dosage control in development and human disease. Trends Cell Biol. 34, 31–47 (2024).

    Google Scholar 

  49. Ameres, S. L. & Zamore, P. D. Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell Biol. 14, 475–488 (2013).

    Google Scholar 

  50. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).

    Google Scholar 

  51. Fromm, B. et al. MirGeneDB 2.1: toward a complete sampling of all major animal phyla. Nucleic Acids Res. 50, D204–D210 (2022).

    Google Scholar 

  52. Panwar, B., Omenn, G. S. & Guan, Y. miRmine: a database of human miRNA expression profiles. Bioinformatics 33, 1554–1560 (2017).

    Google Scholar 

  53. Kavakiotis, I. et al. DIANA-miTED: a microRNA tissue expression database. Nucleic Acids Res. 50, D1055–D1061 (2022).

    Google Scholar 

  54. Isakova, A. et al. A mouse tissue atlas of small noncoding RNA. Proc. Natl. Acad. Sci. USA 117, 25634–25645 (2020).

    Google Scholar 

  55. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Google Scholar 

  56. Xu, P. et al. An improved protocol for small RNA library construction using High Definition adapters. Methods Gener. Sequencing 2, 1–10 (2015).

    Google Scholar 

  57. Clement, K. et al. AmpUMI: design and analysis of unique molecular identifiers for deep amplicon sequencing. Bioinformatics 34, i202–i210 (2018).

    Google Scholar 

  58. Fu, Y. et al. Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genomics 19, 531 (2018).

    Google Scholar 

  59. Faridani, O. R. et al. Single-cell sequencing of the small-RNA transcriptome. Nat. Biotechnol. 34, 1264–1266 (2016).

    Google Scholar 

  60. Hagemann-Jensen, M. et al. Small-seq for single-cell small-RNA sequencing. Nat. Protoc. 13, 2407–2424 (2018).

    Google Scholar 

  61. Hafner, M. et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 17, 1697–1712 (2011).

    Google Scholar 

  62. Jayaprakash, A. D. et al. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res. 39, e141 (2011).

    Google Scholar 

  63. Fuchs, R. T. et al. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS ONE 10, e0126049 (2015).

    Google Scholar 

  64. Kim, H. et al. A mechanism for microRNA arm switching regulated by uridylation. Mol. Cell 78, 1224–1236 e5 (2020).

    Google Scholar 

  65. Srinivasan, G. et al. MiR223-3p promotes synthetic lethality in BRCA1-deficient cancers. Proc. Natl. Acad. Sci. USA 116, 17438–17443 (2019).

    Google Scholar 

  66. Ohanian, M. et al. A heterozygous variant in the human cardiac miR-133 gene, MIR133A2, alters miRNA duplex processing and strand abundance. BMC Genet. 14, 18 (2013).

    Google Scholar 

  67. Suzuki, H. I. et al. Small-RNA asymmetry is directly driven by mammalian Argonautes. Nat. Struct. Mol. Biol. 22, 512–521 (2015).

    Google Scholar 

  68. Mathelier, A. & Carbone, A. Large scale chromosomal mapping of human microRNA structural clusters. Nucleic Acids Res. 41, 4392–4408 (2013).

    Google Scholar 

  69. Gregorova, J., Vychytilova-Faltejskova, P. & Sevcikova, S. Epigenetic regulation of microRNA clusters and families during tumor development. Cancers (Basel) 13, 1333 (2021).

    Google Scholar 

  70. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Google Scholar 

  71. Medley, J. C., Panzade, G. & Zinovyeva, A. Y. microRNA strand selection: Unwinding the rules. Wiley Interdiscip. Rev. RNA 12, e1627 (2021).

    Google Scholar 

  72. Kilikevicius, A., Meister, G. & Corey, D. R. Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res. 50, 617–634 (2022).

    Google Scholar 

  73. Androsavich, J. R. et al. Disease-linked microRNA-21 exhibits drastically reduced mRNA binding and silencing activity in healthy mouse liver. RNA 18, 1510–1526 (2012).

    Google Scholar 

  74. Roush, S. & Slack, F. J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).

    Google Scholar 

  75. Kowarsch, A. et al. miTALOS: analyzing the tissue-specific regulation of signaling pathways by human and mouse microRNAs. RNA 17, 809–819 (2011).

    Google Scholar 

  76. Ludwig, N. et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 44, 3865–3877 (2016).

    Google Scholar 

  77. Keller, A. et al. miRNATissueAtlas2: an update to the human miRNA tissue atlas. Nucleic Acids Res. 50, D211–D221 (2022).

    Google Scholar 

  78. Guo, Z. et al. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci. Rep. 4, 5150 (2014).

    Google Scholar 

  79. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Google Scholar 

  80. Zhou, B. et al. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc. Natl. Acad. Sci. USA 104, 7080–7085 (2007).

    Google Scholar 

  81. Wang, T., Wu, F. & Yu, D. miR-144/451 in hematopoiesis and beyond. ExRNA 1, 16 (2019).

    Google Scholar 

  82. Lai, H., Feng, N. & Zhai, Q. Discovery of the major 15–30 nt mammalian small RNAs, their biogenesis and function. Nat. Commun. 14, 5796 (2023).

    Google Scholar 

Download references

Acknowledgements

We are grateful to Jin Ren and Xinming Qi for providing Crab-eating monkey tissues and Jun Zhu for providing Arabidopsis thaliana tissues. We thank all members of L. Wu’s laboratory for their discussion and comments on this project; Y. Xu for his assistance with high-performance computing; and the staff at the HPC storage and network service platform of SIBCB for supplying the computing resources. Schematics in Figs. 2a and 6a were created using BioRender.com and are included under a paid publication license obtained from BioRender. We acknowledge BioRender for providing the platform and tools for scientific illustration. This work was supported by the National Key R&D Program of China (2021YFA1100201 and 2022YFA1303301), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0570000), and the National Natural Science Foundation of China (92581120) to Ligang Wu; the National Natural Science Foundation of China (32200696) and the Youth Innovation Promotion Association CAS to H.Z.

Author information

Author notes
  1. These authors contributed equally: Wen Xiao, Yuli Zheng, Hongdao Zhang, Beiying Xu.

Authors and Affiliations

  1. State Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China

    Wen Xiao  (肖稳), Yuli Zheng  (郑玉丽), Hongdao Zhang  (张宏道), Beiying Xu  (徐蓓英), Ruiwen Zhang  (张瑞雯) & Ligang Wu  (吴立刚)

Authors
  1. Wen Xiao  (肖稳)
    View author publications

    Search author on:PubMed Google Scholar

  2. Yuli Zheng  (郑玉丽)
    View author publications

    Search author on:PubMed Google Scholar

  3. Hongdao Zhang  (张宏道)
    View author publications

    Search author on:PubMed Google Scholar

  4. Beiying Xu  (徐蓓英)
    View author publications

    Search author on:PubMed Google Scholar

  5. Ruiwen Zhang  (张瑞雯)
    View author publications

    Search author on:PubMed Google Scholar

  6. Ligang Wu  (吴立刚)
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.W. and H.Z. conceived and designed the study. Y.Z. and H.Z. conceived and developed the methodology of 4NBoost. B.X., R.Z., W.X., and Y.Z. collected the cells and tissues. B.X., R.Z., and Y.Z. isolated all the RNAs. Y.Z. generated all sncRNA-seq libraries. W.X. designed spike-ins and performed computational analyses. W.X., H.Z., and Y.Z. interpreted the data. W.X., H.Z., L.W., and Y.Z. wrote the manuscript.

Corresponding authors

Correspondence to Hongdao Zhang  (张宏道) or Ligang Wu  (吴立刚).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1-4

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Zheng, Y., Zhang, H. et al. An absolute quantification atlas of small non-coding RNAs across diverse mammalian tissues and cell lines. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68812-7

Download citation

  • Received: 27 May 2025

  • Accepted: 18 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68812-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing