Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
The disappearing quasi-biennial oscillation under sustained global warming
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 29 January 2026

The disappearing quasi-biennial oscillation under sustained global warming

  • Fuhai Luo1,
  • Fei Xie  ORCID: orcid.org/0000-0003-2891-38831,
  • Tianjun Zhou  ORCID: orcid.org/0000-0002-5829-72792,3,
  • Yingli Niu1,
  • Yan Xia  ORCID: orcid.org/0000-0001-8664-53251,
  • Jiali Luo4,
  • Ruhua Zhang5,
  • Ying Wang4,
  • Wenjun Liang  ORCID: orcid.org/0009-0009-7249-32316 &
  • …
  • Wenshou Tian  ORCID: orcid.org/0000-0002-4700-41944 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atmospheric dynamics
  • Projection and prediction

Abstract

The stratospheric quasi-biennial oscillation (QBO) is a key modulator of interannual variability in global weather and climate. Over recent decades, the amplitude of the lower-stratospheric QBO has weakened, and in recent years the QBO has experienced unprecedented disruptions. However, the longer-term evolution of the QBO and its impact on tropospheric circulation remain uncertain. Here, based on CMIP6 models with extended projections beyond 2100 and targeted sensitivity experiments, we show that under ongoing global warming, the QBO exhibits a progressively weaker amplitude and shorter period, eventually risking complete disappearance. This is projected to reduce the predictability of 2–3-year climate forecasts in the troposphere. The weakening of the QBO amplitude arises from enhanced tropical upwelling, whereas the shortening of its period results from the combined influence of strengthened upwelling and intensified wave activity. The potential disappearance of the QBO poses new challenges for climate change under high emission.

Data availability

The ERA5 reanalysis56 data used in this study are available in the Copernicus Climate Change Service (C3S) Climate Data Store57 (https://doi.org/10.24381/cds.6860a573). The CMIP6 model data42 used in this study are available in the Earth System Grid Federation (ESGF) database (https://esgf-metagrid.cloud.dkrz.de/search/cmip6-dkrz/). The HadISST data58 used in this study are available from the UK Met Office Hadley Center (http://www.metoffice.gov.uk/hadobs/hadisst/data/download.html). The sensitivity experiment outputs and the source data underlying each figure that support the findings of this Article are available in the Zenodo repository59.

Code availability

The code used for data analysis and figure generation in this study is available in the Zenodo repository59. The source codes for CESM1 and CESM2 are freely available from the CESM website: https://www.cesm.ucar.edu/models/releases.

References

  1. Baldwin, M. P. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).

    Google Scholar 

  2. Butchart, N. The stratosphere: a review of the dynamics and variability. Weather Clim. Dyn. 3, 1237–1272 (2022).

    Google Scholar 

  3. Tian, W. et al. Role of stratospheric processes in climate change: advances and challenges. Adv. Atmos. Sci. 40, 1379–1400 (2023).

    Google Scholar 

  4. Garfinkel, C. I. & Hartmann, D. L. The influence of the Quasi-Biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: simplified dry GCMs. J. Atmos. Sci. 68, 1273–1289 (2011).

    Google Scholar 

  5. Anstey, J. A. et al. Impacts, processes and projections of the quasi-biennial oscillation. Nat. Rev. Earth. Environ. 3, 588–603 (2022).

    Google Scholar 

  6. Gray, L. J. et al. Surface impacts of the Quasi Biennial Oscillation. Atmos. Chem. Phys. 18, 8227–8247 (2018).

    Google Scholar 

  7. Hitchman, M. H. & Huesmann, A. S. Seasonal influence of the Quasi-Biennial oscillation on stratospheric jets and Rossby wave breaking. J. Atmos. Sci. 66, 935–946 (2009).

    Google Scholar 

  8. Holton, J. R. & Tan, H.-C. The influence of the equatorial Quasi-Biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci. 37, 2200–2208 (1980).

    Google Scholar 

  9. Rao, J., Garfinkel, C. I. & White, I. P. Impact of the Quasi-Biennial oscillation on the Northern winter stratospheric polar vortex in CMIP5/6 Models. J. Clim. 33, 4787–4813 (2020).

    Google Scholar 

  10. Seo, J., Choi, W., Youn, D., Park, D.-S. R. & Kim, J. Y. Relationship between the stratospheric quasi-biennial oscillation and the spring rainfall in the western North Pacific: QBO AND SPRING WNP RAINFALL. Geophys. Res. Lett. 40, 5949–5953 (2013).

    Google Scholar 

  11. Luo, J. et al. The impact of the QBO vertical structure on June extreme high temperatures in South Asia. npj Clim. Atmos. Sci. 7, 236 (2024).

    Google Scholar 

  12. Zhang, R. et al. A stratospheric precursor of East Asian summer droughts and floods. Nat. Commun. 15, 247 (2024).

    Google Scholar 

  13. Kang, M.-J., Kim, H. & Son, S.-W. QBO modulation of MJO teleconnections in the North Pacific: impact of preceding MJO phases. npj Clim. Atmos. Sci. 7, 12 (2024).

    Google Scholar 

  14. Baldwin, M. P. & Dunkerton, T. J. Quasi-biennial modulation of the southern hemisphere stratospheric polar vortex. Geophys. Res. Lett. 25, 3343–3346 (1998).

    Google Scholar 

  15. Anstey, J. A. & Shepherd, T. G. Response of the northern stratospheric polar vortex to the seasonal alignment of QBO phase transitions. Geophys. Res. Lett. 35, L22810 (2008).

    Google Scholar 

  16. Luo, F. et al. The key role of the vertical structure of the stratospheric quasi-biennial oscillation in the variations of asian precipitation in summer. Geophys. Res. Lett. 50, e2023GL105863 (2023).

    Google Scholar 

  17. Li, Y., Huang, S. & Wen, Z. The influence of the stratospheric quasi-biennial oscillation on the tropical easterly jet over the maritime continent. Geophys. Res. Lett. 49, e2022GL098940 (2022).

  18. Inoue, M. & Takahashi, M. Connection between the asian summer monsoon and stratosphere-troposphere circulation over the asian region. J. Meteorol. Soc. Jpn. 87, 119–138 (2009).

    Google Scholar 

  19. Martin, Z. et al. The influence of the quasi-biennial oscillation on the Madden–Julian oscillation. Nat. Rev. Earth. Environ. 2, 477–489 (2021).

    Google Scholar 

  20. Jin, D., Kim, D., Son, S.-W. & Oreopoulos, L. QBO deepens MJO convection. Nat. Commun. 14, 4088 (2023).

    Google Scholar 

  21. Kawatani, Y. & Hamilton, K. Weakened stratospheric quasi-biennial oscillation driven by increased tropical mean upwelling. Nature 497, 478–481 (2013).

    Google Scholar 

  22. Osprey, S. M. et al. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science 353, 1424–1427 (2016).

    Google Scholar 

  23. Coy, L., Newman, P. A., Pawson, S. & Lait, L. R. Dynamics of the disrupted 2015/16 quasi-biennial oscillation. J. Clim. 30, 5661–5674 (2017).

    Google Scholar 

  24. Hirota, N. et al. The influences of El Nino and Arctic sea-ice on the QBO disruption in February 2016. npj Clim. Atmos. Sci. 1, 10 (2018).

    Google Scholar 

  25. He, Y., Zhu, X., Sheng, Z., He, M. & Feng, Y. Observations of inertia gravity waves in the western Pacific and their characteristic in the 2015/2016 quasi-biennial oscillation disruption. JGR Atmos. 127, e2022JD037208 (2022).

    Google Scholar 

  26. Kang, M.-J. & Chun, H.-Y. Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20 quasi-biennial oscillation (QBO) disruption. Atmos. Chem. Phys. 21, 9839–9857 (2021).

    Google Scholar 

  27. Bushell, A. C. et al. Evaluation of the Quasi-Biennial Oscillation in global climate models for the SPARC QBO-initiative. Quart. J. R. Meteor. Soc. 148, 1459–1489 (2022).

    Google Scholar 

  28. Richter, J. H. et al. Progress in simulating the quasi-biennial oscillation in CMIP models. J. Geophys. Res. Atmos. 125, e2019JD032362 (2020).

  29. Stockdale, T. N. et al. Prediction of the quasi-biennial oscillation with a multi-model ensemble of QBO -resolving models. Quart. J. R. Meteor. Soc. 148, 1519–1540 (2022).

    Google Scholar 

  30. Butchart, N. et al. QBO changes in CMIP6 climate projections. Geophys. Res. Lett. 47, e2019GL086903 (2020).

    Google Scholar 

  31. Anstey, J. A. et al. Prospect of increased disruption to the QBO in a changing climate. Geophys. Res. Lett. 48, e2021GL093058 (2021).

    Google Scholar 

  32. Garfinkel, C. I., Avisar, D., Osprey, S. & Smith, D. The response of the QBO to external forcings: implications for disruption events. JGR Atmos. 130, e2025JD044438 (2025).

    Google Scholar 

  33. Kawatani, Y., Hamilton, K. & Watanabe, S. The quasi-biennial oscillation in a double CO2 climate. J. Atmos. Sci. 68, 265–283 (2011).

    Google Scholar 

  34. Pahlavan, H. A., Fu, Q., Wallace, J. M. & Kiladis, G. N. Revisiting the quasi-biennial oscillation as seen in ERA5. Part I: description and momentum budget. J. Atmos. Sci. 78, 673–691 (2021).

    Google Scholar 

  35. Dunkerton, T. J. A two-dimensional model of the quasi-biennial oscillation. J. Atmos. Sci. 42, 1151–1160 (1985).

    Google Scholar 

  36. Plumb, R. A. The interaction of two internal waves with the mean flow: implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci. 34, 1847–1858 (1977).

    Google Scholar 

  37. Rajendran, K., Moroz, I. M., Read, P. L. & Osprey, S. M. Synchronisation of the equatorial QBO by the annual cycle in tropical upwelling in a warming climate. Quart. J. R. Meteor. Soc. 142, 1111–1120 (2016).

    Google Scholar 

  38. Bartana, H., Garfinkel, C. I., Shamir, O. & Rao, J. Projected future changes in equatorial wave spectrum in CMIP6. Clim. Dyn. 60, 3277–3289 (2023).

    Google Scholar 

  39. Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H. & Roundy, P. E. Convectively coupled equatorial waves. Rev. Geophys. 47, 2008RG000266 (2009).

    Google Scholar 

  40. Byrne, M. P. & Schneider, T. Narrowing of the ITCZ in a warming climate: Physical mechanisms. Geophys. Res. Lett. 43, 11–350 (2016).

  41. Hong, X., Lu, R. & Li, S. Asymmetric relationship between the meridional displacement of the asian westerly jet and the Silk Road pattern. Adv. Atmos. Sci. 35, 389–396 (2018).

    Google Scholar 

  42. Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  43. Schenzinger, V., Osprey, S., Gray, L. & Butchart, N. Defining metrics of the quasi-biennial oscillation in global climate models. Geosci. Model Dev. 10, 2157–2168 (2017).

    Google Scholar 

  44. Boer, G. J. & Hamilton, K. QBO influence on extratropical predictive skill. Clim. Dyn. 31, 987–1000 (2008).

    Google Scholar 

  45. Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. 79, 61–78 (1998).

    Google Scholar 

  46. Andrews, D. G., Holton, J. R. & Leovy, C. B. Middle Atmosphere Dynamics Section 3.5, 127–130 (Academic Press, 1987).

  47. Holton, J. R. & Lindzen, R. S. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29, 1076–1080 (1972).

    Google Scholar 

  48. Saravanan, R. A multiwave model of the quasi-biennial oscillation. J. Atmos. Sci. 47, 2465–2474 (1990).

    Google Scholar 

  49. Hampson, J. & Haynes, P. Phase alignment of the tropical stratospheric QBO in the annual cycle. J. Atmos. Sci. 61, 2627–2637 (2004).

    Google Scholar 

  50. Lindzen, R. S. Equatorial planetary waves in Shear. Part I. J. Atmos. Sci. 28, 609–622 (1971).

    Google Scholar 

  51. Wheeler, M. & Kiladis, G. N. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci. 56, 374–399 (1999).

    Google Scholar 

  52. Selesnick, I. W. & Burrus, C. S. Generalized digital Butterworth filter design. IEEE Trans. Signal Process. 46, 1688–1694 (1998).

    Google Scholar 

  53. Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    Google Scholar 

  54. Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteor. Soc. 94, 1339–1360 (2013).

    Google Scholar 

  55. Dawson, A. eofs: a library for EOF analysis of meteorological, oceanographic, and climate data. JORS 4, 14 (2016).

    Google Scholar 

  56. Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. R. Meteor. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  57. Hersbach, H. et al. ERA5 monthly averaged data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.6860a573 (2023).

  58. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 2002JD002670 (2003).

    Google Scholar 

  59. Luo, F. et al. Data and code for the disappearing quasi-biennial oscillation under sustained global warming. Zenodo https://doi.org/10.5281/zenodo.18278615 (2026).

Download references

Acknowledgements

We thank the ERA5, NASA and UK Met Office Hadley Center for providing the observational data. We thank the NCAR for providing the WACCM model, and the CMIP6 project. Funding for this research was provided by the National Natural Science Foundation of China (Grants 42394120, W.S.T. and 42375070, F.X.) and the Fundamental Research Funds for the Central Universities (F.X.).

Author information

Authors and Affiliations

  1. State Key Laboratory of Earth Surface Processes and Hazards Risk Governance, School of Systems Science and Faculty of Geographical Science, Beijing Normal University, Beijing, China

    Fuhai Luo, Fei Xie, Yingli Niu & Yan Xia

  2. State Key Laboratory of Earth System Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    Tianjun Zhou

  3. University of the Chinese Academy of Sciences, Beijing, China

    Tianjun Zhou

  4. College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

    Jiali Luo, Ying Wang & Wenshou Tian

  5. Institute of Atmospheric Sciences, Fudan University, Shanghai, China

    Ruhua Zhang

  6. School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China

    Wenjun Liang

Authors
  1. Fuhai Luo
    View author publications

    Search author on:PubMed Google Scholar

  2. Fei Xie
    View author publications

    Search author on:PubMed Google Scholar

  3. Tianjun Zhou
    View author publications

    Search author on:PubMed Google Scholar

  4. Yingli Niu
    View author publications

    Search author on:PubMed Google Scholar

  5. Yan Xia
    View author publications

    Search author on:PubMed Google Scholar

  6. Jiali Luo
    View author publications

    Search author on:PubMed Google Scholar

  7. Ruhua Zhang
    View author publications

    Search author on:PubMed Google Scholar

  8. Ying Wang
    View author publications

    Search author on:PubMed Google Scholar

  9. Wenjun Liang
    View author publications

    Search author on:PubMed Google Scholar

  10. Wenshou Tian
    View author publications

    Search author on:PubMed Google Scholar

Contributions

F.X. and W.S.T. contributed to the original idea. F.H.L. and F.X. wrote this paper drafted the figures and undertook the numerical simulations. T.J.Z., Y.L.N., Y.X., J.L.L., R.H.Z., Y.W., W.J.L. interpreted the results and discussed their implications.

Corresponding authors

Correspondence to Fei Xie or Wenshou Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Matthew H. Hitchman and the other, anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Xie, F., Zhou, T. et al. The disappearing quasi-biennial oscillation under sustained global warming. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68922-2

Download citation

  • Received: 04 December 2025

  • Accepted: 21 January 2026

  • Published: 29 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68922-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing