Abstract
The stratospheric quasi-biennial oscillation (QBO) is a key modulator of interannual variability in global weather and climate. Over recent decades, the amplitude of the lower-stratospheric QBO has weakened, and in recent years the QBO has experienced unprecedented disruptions. However, the longer-term evolution of the QBO and its impact on tropospheric circulation remain uncertain. Here, based on CMIP6 models with extended projections beyond 2100 and targeted sensitivity experiments, we show that under ongoing global warming, the QBO exhibits a progressively weaker amplitude and shorter period, eventually risking complete disappearance. This is projected to reduce the predictability of 2–3-year climate forecasts in the troposphere. The weakening of the QBO amplitude arises from enhanced tropical upwelling, whereas the shortening of its period results from the combined influence of strengthened upwelling and intensified wave activity. The potential disappearance of the QBO poses new challenges for climate change under high emission.
Data availability
The ERA5 reanalysis56 data used in this study are available in the Copernicus Climate Change Service (C3S) Climate Data Store57 (https://doi.org/10.24381/cds.6860a573). The CMIP6 model data42 used in this study are available in the Earth System Grid Federation (ESGF) database (https://esgf-metagrid.cloud.dkrz.de/search/cmip6-dkrz/). The HadISST data58 used in this study are available from the UK Met Office Hadley Center (http://www.metoffice.gov.uk/hadobs/hadisst/data/download.html). The sensitivity experiment outputs and the source data underlying each figure that support the findings of this Article are available in the Zenodo repository59.
Code availability
The code used for data analysis and figure generation in this study is available in the Zenodo repository59. The source codes for CESM1 and CESM2 are freely available from the CESM website: https://www.cesm.ucar.edu/models/releases.
References
Baldwin, M. P. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).
Butchart, N. The stratosphere: a review of the dynamics and variability. Weather Clim. Dyn. 3, 1237–1272 (2022).
Tian, W. et al. Role of stratospheric processes in climate change: advances and challenges. Adv. Atmos. Sci. 40, 1379–1400 (2023).
Garfinkel, C. I. & Hartmann, D. L. The influence of the Quasi-Biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: simplified dry GCMs. J. Atmos. Sci. 68, 1273–1289 (2011).
Anstey, J. A. et al. Impacts, processes and projections of the quasi-biennial oscillation. Nat. Rev. Earth. Environ. 3, 588–603 (2022).
Gray, L. J. et al. Surface impacts of the Quasi Biennial Oscillation. Atmos. Chem. Phys. 18, 8227–8247 (2018).
Hitchman, M. H. & Huesmann, A. S. Seasonal influence of the Quasi-Biennial oscillation on stratospheric jets and Rossby wave breaking. J. Atmos. Sci. 66, 935–946 (2009).
Holton, J. R. & Tan, H.-C. The influence of the equatorial Quasi-Biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci. 37, 2200–2208 (1980).
Rao, J., Garfinkel, C. I. & White, I. P. Impact of the Quasi-Biennial oscillation on the Northern winter stratospheric polar vortex in CMIP5/6 Models. J. Clim. 33, 4787–4813 (2020).
Seo, J., Choi, W., Youn, D., Park, D.-S. R. & Kim, J. Y. Relationship between the stratospheric quasi-biennial oscillation and the spring rainfall in the western North Pacific: QBO AND SPRING WNP RAINFALL. Geophys. Res. Lett. 40, 5949–5953 (2013).
Luo, J. et al. The impact of the QBO vertical structure on June extreme high temperatures in South Asia. npj Clim. Atmos. Sci. 7, 236 (2024).
Zhang, R. et al. A stratospheric precursor of East Asian summer droughts and floods. Nat. Commun. 15, 247 (2024).
Kang, M.-J., Kim, H. & Son, S.-W. QBO modulation of MJO teleconnections in the North Pacific: impact of preceding MJO phases. npj Clim. Atmos. Sci. 7, 12 (2024).
Baldwin, M. P. & Dunkerton, T. J. Quasi-biennial modulation of the southern hemisphere stratospheric polar vortex. Geophys. Res. Lett. 25, 3343–3346 (1998).
Anstey, J. A. & Shepherd, T. G. Response of the northern stratospheric polar vortex to the seasonal alignment of QBO phase transitions. Geophys. Res. Lett. 35, L22810 (2008).
Luo, F. et al. The key role of the vertical structure of the stratospheric quasi-biennial oscillation in the variations of asian precipitation in summer. Geophys. Res. Lett. 50, e2023GL105863 (2023).
Li, Y., Huang, S. & Wen, Z. The influence of the stratospheric quasi-biennial oscillation on the tropical easterly jet over the maritime continent. Geophys. Res. Lett. 49, e2022GL098940 (2022).
Inoue, M. & Takahashi, M. Connection between the asian summer monsoon and stratosphere-troposphere circulation over the asian region. J. Meteorol. Soc. Jpn. 87, 119–138 (2009).
Martin, Z. et al. The influence of the quasi-biennial oscillation on the Madden–Julian oscillation. Nat. Rev. Earth. Environ. 2, 477–489 (2021).
Jin, D., Kim, D., Son, S.-W. & Oreopoulos, L. QBO deepens MJO convection. Nat. Commun. 14, 4088 (2023).
Kawatani, Y. & Hamilton, K. Weakened stratospheric quasi-biennial oscillation driven by increased tropical mean upwelling. Nature 497, 478–481 (2013).
Osprey, S. M. et al. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science 353, 1424–1427 (2016).
Coy, L., Newman, P. A., Pawson, S. & Lait, L. R. Dynamics of the disrupted 2015/16 quasi-biennial oscillation. J. Clim. 30, 5661–5674 (2017).
Hirota, N. et al. The influences of El Nino and Arctic sea-ice on the QBO disruption in February 2016. npj Clim. Atmos. Sci. 1, 10 (2018).
He, Y., Zhu, X., Sheng, Z., He, M. & Feng, Y. Observations of inertia gravity waves in the western Pacific and their characteristic in the 2015/2016 quasi-biennial oscillation disruption. JGR Atmos. 127, e2022JD037208 (2022).
Kang, M.-J. & Chun, H.-Y. Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20 quasi-biennial oscillation (QBO) disruption. Atmos. Chem. Phys. 21, 9839–9857 (2021).
Bushell, A. C. et al. Evaluation of the Quasi-Biennial Oscillation in global climate models for the SPARC QBO-initiative. Quart. J. R. Meteor. Soc. 148, 1459–1489 (2022).
Richter, J. H. et al. Progress in simulating the quasi-biennial oscillation in CMIP models. J. Geophys. Res. Atmos. 125, e2019JD032362 (2020).
Stockdale, T. N. et al. Prediction of the quasi-biennial oscillation with a multi-model ensemble of QBO -resolving models. Quart. J. R. Meteor. Soc. 148, 1519–1540 (2022).
Butchart, N. et al. QBO changes in CMIP6 climate projections. Geophys. Res. Lett. 47, e2019GL086903 (2020).
Anstey, J. A. et al. Prospect of increased disruption to the QBO in a changing climate. Geophys. Res. Lett. 48, e2021GL093058 (2021).
Garfinkel, C. I., Avisar, D., Osprey, S. & Smith, D. The response of the QBO to external forcings: implications for disruption events. JGR Atmos. 130, e2025JD044438 (2025).
Kawatani, Y., Hamilton, K. & Watanabe, S. The quasi-biennial oscillation in a double CO2 climate. J. Atmos. Sci. 68, 265–283 (2011).
Pahlavan, H. A., Fu, Q., Wallace, J. M. & Kiladis, G. N. Revisiting the quasi-biennial oscillation as seen in ERA5. Part I: description and momentum budget. J. Atmos. Sci. 78, 673–691 (2021).
Dunkerton, T. J. A two-dimensional model of the quasi-biennial oscillation. J. Atmos. Sci. 42, 1151–1160 (1985).
Plumb, R. A. The interaction of two internal waves with the mean flow: implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci. 34, 1847–1858 (1977).
Rajendran, K., Moroz, I. M., Read, P. L. & Osprey, S. M. Synchronisation of the equatorial QBO by the annual cycle in tropical upwelling in a warming climate. Quart. J. R. Meteor. Soc. 142, 1111–1120 (2016).
Bartana, H., Garfinkel, C. I., Shamir, O. & Rao, J. Projected future changes in equatorial wave spectrum in CMIP6. Clim. Dyn. 60, 3277–3289 (2023).
Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H. & Roundy, P. E. Convectively coupled equatorial waves. Rev. Geophys. 47, 2008RG000266 (2009).
Byrne, M. P. & Schneider, T. Narrowing of the ITCZ in a warming climate: Physical mechanisms. Geophys. Res. Lett. 43, 11–350 (2016).
Hong, X., Lu, R. & Li, S. Asymmetric relationship between the meridional displacement of the asian westerly jet and the Silk Road pattern. Adv. Atmos. Sci. 35, 389–396 (2018).
Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Schenzinger, V., Osprey, S., Gray, L. & Butchart, N. Defining metrics of the quasi-biennial oscillation in global climate models. Geosci. Model Dev. 10, 2157–2168 (2017).
Boer, G. J. & Hamilton, K. QBO influence on extratropical predictive skill. Clim. Dyn. 31, 987–1000 (2008).
Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. 79, 61–78 (1998).
Andrews, D. G., Holton, J. R. & Leovy, C. B. Middle Atmosphere Dynamics Section 3.5, 127–130 (Academic Press, 1987).
Holton, J. R. & Lindzen, R. S. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29, 1076–1080 (1972).
Saravanan, R. A multiwave model of the quasi-biennial oscillation. J. Atmos. Sci. 47, 2465–2474 (1990).
Hampson, J. & Haynes, P. Phase alignment of the tropical stratospheric QBO in the annual cycle. J. Atmos. Sci. 61, 2627–2637 (2004).
Lindzen, R. S. Equatorial planetary waves in Shear. Part I. J. Atmos. Sci. 28, 609–622 (1971).
Wheeler, M. & Kiladis, G. N. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci. 56, 374–399 (1999).
Selesnick, I. W. & Burrus, C. S. Generalized digital Butterworth filter design. IEEE Trans. Signal Process. 46, 1688–1694 (1998).
Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).
Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteor. Soc. 94, 1339–1360 (2013).
Dawson, A. eofs: a library for EOF analysis of meteorological, oceanographic, and climate data. JORS 4, 14 (2016).
Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. R. Meteor. Soc. 146, 1999–2049 (2020).
Hersbach, H. et al. ERA5 monthly averaged data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.6860a573 (2023).
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 2002JD002670 (2003).
Luo, F. et al. Data and code for the disappearing quasi-biennial oscillation under sustained global warming. Zenodo https://doi.org/10.5281/zenodo.18278615 (2026).
Acknowledgements
We thank the ERA5, NASA and UK Met Office Hadley Center for providing the observational data. We thank the NCAR for providing the WACCM model, and the CMIP6 project. Funding for this research was provided by the National Natural Science Foundation of China (Grants 42394120, W.S.T. and 42375070, F.X.) and the Fundamental Research Funds for the Central Universities (F.X.).
Author information
Authors and Affiliations
Contributions
F.X. and W.S.T. contributed to the original idea. F.H.L. and F.X. wrote this paper drafted the figures and undertook the numerical simulations. T.J.Z., Y.L.N., Y.X., J.L.L., R.H.Z., Y.W., W.J.L. interpreted the results and discussed their implications.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Matthew H. Hitchman and the other, anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Luo, F., Xie, F., Zhou, T. et al. The disappearing quasi-biennial oscillation under sustained global warming. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68922-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68922-2