Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Sensory encoding and memory retrieval are coordinated with propagating waves in the human brain
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Sensory encoding and memory retrieval are coordinated with propagating waves in the human brain

  • Yifan Yang  ORCID: orcid.org/0000-0001-5384-50721,
  • David A. Leopold  ORCID: orcid.org/0000-0002-1345-63602,3,
  • Jeff H. Duyn4 &
  • …
  • Xiao Liu  ORCID: orcid.org/0000-0002-8459-31351,5 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cognitive neuroscience
  • Learning and memory
  • Neural decoding

Abstract

Complex behavior entails a balance between taking in sensory information from the environment and utilizing previously learned internal information. Studies on mice show that the brain continually alternates between outward and inward cognitive modes every few seconds, accompanied by stereotyped cascades of neuronal spiking. Our analysis of large fMRI datasets revealed a similar mechanism in humans. Human brain activity was punctuated every several seconds by coherent, propagating waves emerging in the exteroceptive sensorimotor regions and terminating in the interoceptive default mode network. As in mice, these waves in human fMRI are accompanied by phase-specific enhancements in sensory information encoding and memory retrieval. These findings suggest a conserved feature of mammalian brain physiology that bears directly on the integration of sensory and mnemonic information during everyday behavior.

Data availability

For mice single neuron analysis, we used the Neuropixels Visual Coding Neuropixels and two-photon calcium imaging datasets from the Allen Institute32,33, accessible at https://portal.brain-map.org/overview. For resting-state human fMRI analysis, we used HCP-7T dataset from https://www.humanconnectome.org. We shared our EEG-fMRI dataset at https://openneuro.org/datasets/ds003768. For task human fMRI analysis, we used NSD dataset available at https://naturalscenesdataset.org. Source data are provided with this paper. The processed data in this study is available upon request.

Code availability

The Python code that produced the major results of this paper is available at https://github.com/psu-mcnl/fMRI-Arousal. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.

References

  1. Biswal, B., Zerrin Yetkin, F., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med. 34, 537–541 (1995).

    Google Scholar 

  2. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

    Google Scholar 

  3. Yu, M., Sporns, O. & Saykin, A. J. The human connectome in Alzheimer disease—relationship to biomarkers and genetics. Nat. Rev. Neurol. 17, 545–563 (2021).

    Google Scholar 

  4. Smith, S. M. et al. A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1565–1567 (2015).

    Google Scholar 

  5. Zhang, D. & Raichle, M. E. Disease and the brain’s dark energy. Nat. Rev. Neurol. 6, 15–28 (2010).

    Google Scholar 

  6. Matsui, T., Murakami, T. & Ohki, K. Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity. Proc. Natl. Acad. Sci. 113, 6556–6561 (2016).

    Google Scholar 

  7. Gu, Y. et al. Brain activity fluctuations propagate as waves traversing the cortical hierarchy. Cereb. Cortex 31, 3986–4005 (2021).

    Google Scholar 

  8. Yousefi, B., Shin, J., Schumacher, E. H. & Keilholz, S. D. Quasi-periodic patterns of intrinsic brain activity in individuals and their relationship to global signal. Neuroimage 167, 297–308 (2018).

    Google Scholar 

  9. Yousefi, B. & Keilholz, S. Propagating patterns of intrinsic activity along macroscale gradients coordinate functional connections across the whole brain. Neuroimage 231, 117827 (2021).

    Google Scholar 

  10. Raut, R. V. et al. Global waves synchronize the brain’s functional systems with fluctuating arousal. Sci. Adv. 7, eabf2709 (2021).

    Google Scholar 

  11. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).

    Google Scholar 

  12. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Google Scholar 

  13. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    Google Scholar 

  14. Okun, M., Steinmetz, N. A., Lak, A., Dervinis, M. & Harris, K. D. Distinct structure of cortical population activity on fast and infraslow timescales. Cereb. Cortex 29, 2196–2210 (2019).

    Google Scholar 

  15. Liu, X., Leopold, D. A. & Yang, Y. Single-neuron firing cascades underlie global spontaneous brain events. Proc. Natl. Acad. Sci. 118, e2105395118 (2021).

    Google Scholar 

  16. Yang, Y., Leopold, D. A., Duyn, J. H. & Liu, X. Hippocampal replay sequence governed by spontaneous brain-wide dynamics. PNAS Nexus 3, pgae078 (2024).

  17. Yang, Y., Leopold, D. A., Duyn, J. H., Sipe, G. O., & Liu, X. Sensory encoding alternates with hippocampal ripples across cycles of forebrain spiking cascades. Advanced Science, 12, 2406224 (2025).

  18. Hasselmo, M. E. Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav. Brain Res. 67, 1–27 (1995).

    Google Scholar 

  19. Buzsáki, G. Two-stage model of memory trace formation: a role for noisy brain states. Neuroscience 31, 551–570 (1989).

    Google Scholar 

  20. Honey, C. J., Newman, E. L. & Schapiro, A. C. Switching between internal and external modes: a multiscale learning principle. Netw. Neurosci. 1, 339–356 (2017).

    Google Scholar 

  21. Gu, Y. et al. An orderly sequence of autonomic and neural events at transient arousal changes. Neuroimage 264, 119720 (2022).

    Google Scholar 

  22. Yellin, D., Berkovich-Ohana, A. & Malach, R. Coupling between pupil fluctuations and resting-state fMRI uncovers a slow build-up of antagonistic responses in the human cortex. Neuroimage 106, 414–427 (2015).

    Google Scholar 

  23. Bolt, T. et al. Autonomic physiological coupling of the global fMRI signal. Nat Neurosci 28, 1327–1335 (2025)

  24. Podvalny, E., Sanchez-Romero, R. & Cole, M. W. Functionality of arousal-regulating brain circuitry at rest predicts human cognitive abilities. Cereb. Cortex 34, bhae192 (2024).

    Google Scholar 

  25. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. 102, 9673–9678 (2005).

    Google Scholar 

  26. Mitra, A., Snyder, A. Z., Blazey, T. & Raichle, M. E. Lag threads organize the brain’s intrinsic activity. Proc. Natl. Acad. Sci. 112, E2235–E2244 (2015).

    Google Scholar 

  27. Bolt, T. et al. A parsimonious description of global functional brain organization in three spatiotemporal patterns. Nat. Neurosci. 25, 1093–1103 (2022).

    Google Scholar 

  28. Logothetis, N. K. et al. Hippocampal–cortical interaction during periods of subcortical silence. Nature 491, 547–553 (2012).

    Google Scholar 

  29. Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

    Google Scholar 

  30. Yoss, R. E., Moyer, N. J. & Hollenhorst, R. W. Pupil size and spontaneous pupillary waves associated with alertness, drowsiness, and sleep. Neurology 20, 545 (1970).

    Google Scholar 

  31. Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84, 355–362 (2014).

    Google Scholar 

  32. Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).

    Google Scholar 

  33. de Vries, S. E. J. et al. A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nat. Neurosci. 23, 138–151 (2020).

    Google Scholar 

  34. Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    Google Scholar 

  35. Van Essen, D. C. et al. The human connectome project: a data acquisition perspective. Neuroimage 62, 2222–2231 (2012).

    Google Scholar 

  36. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. 113, 12574–12579 (2016).

    Google Scholar 

  37. Allen, E. J. et al. A massive 7 T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nat. Neurosci. 25, 116–126 (2022).

    Google Scholar 

  38. Li, W., Zhu, L., Wen, L. & Yang, Y. DeCap: decoding CLIP latents for zero-shot captioning via text-only training. In The Eleventh International Conference on Learning Representations https://openreview.net/forum?id=Lt8bMlhiwx2) (2023).

  39. Radford, A. et al. Learning transferable visual models from natural language supervision. In Proc. 38th International Conference on Machine Learning Vol. 139 of Proceedings of Machine Learning Research 8748–8763 (eds Meila, M., Zhang, T.) https://proceedings.mlr.press/v139/radford21a.html) (PMLR, 2021).

  40. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A Simple framework for contrastive learning of visual representations. In Proc. 37th International Conference on Machine Learning Vol. 119 of Proceedings of Machine Learning Research 1597–1607 (eds III, H. D. & Singh, A) https://proceedings.mlr.press/v119/chen20j.html) (PMLR, 2020).

  41. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  42. Aggleton, J. P. et al. Hippocampal–anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur. J. Neurosci. 31, 2292–2307 (2010).

    Google Scholar 

  43. Hwang, K., Shine, J. M., Cole, M. W. & Sorenson, E. Thalamocortical contributions to cognitive task activity. Elife 11, e81282 (2022).

    Google Scholar 

  44. Higgins, C. et al. Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron 109, 882–893.e7 (2021).

    Google Scholar 

  45. Norman, Y., Raccah, O., Liu, S., Parvizi, J. & Malach, R. Hippocampal ripples and their coordinated dialogue with the default mode network during recent and remote recollection. Neuron 109, 2767–2780.e5 (2021).

    Google Scholar 

  46. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).

    Google Scholar 

  47. Livingstone, M. S. & Hubel, D. H. Effects of sleep and arousal on the processing of visual information in the cat. Nature 291, 554–561 (1981).

    Google Scholar 

  48. Hasenstaub, A., Sachdev, R. N. S. & McCormick, D. A. State changes rapidly modulate cortical neuronal responsiveness. J. Neurosci. 27, 9607–9622 (2007).

    Google Scholar 

  49. Fox, M. D., Snyder, A. Z., Zacks, J. M. & Raichle, M. E. Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat. Neurosci. 9, 23–25 (2006).

    Google Scholar 

  50. He, B. J. Spontaneous and task-evoked brain activity negatively interact. J. Neurosci. 33, 4672–4682 (2013).

    Google Scholar 

  51. McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).

    Google Scholar 

  52. Chen, W., Park, K., Pan, Y., Koretsky, A. P. & Du, C. Interactions between stimuli-evoked cortical activity and spontaneous low frequency oscillations measured with neuronal calcium. Neuroimage 210, 116554 (2020).

    Google Scholar 

  53. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Google Scholar 

  54. Euston, D. R., Tatsuno, M. & McNaughton, B. L. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318, 1147–1150 (2007).

    Google Scholar 

  55. Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 365, eaax1030 (2019).

    Google Scholar 

  56. Vaz, A. P., Inati, S. K., Brunel, N. & Zaghloul, K. A. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science 363, 975–978 (2019).

    Google Scholar 

  57. Sakon, J. J. & Kahana, M. J. Hippocampal ripples signal contextually mediated episodic recall. Proc. Natl. Acad. Sci. 119, e2201657119 (2022).

    Google Scholar 

  58. Karimi Abadchi, J. et al. Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples. Elife 9, e51972 (2020).

    Google Scholar 

  59. Kaplan, R. et al. Hippocampal sharp-wave ripples influence selective activation of the default mode network. Curr. Biol. 26, 686–691 (2016).

    Google Scholar 

  60. Klinzing, J. G., Niethard, N. & Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 22, 1598–1610 (2019).

    Google Scholar 

  61. Dudai, Y., Karni, A. & Born, J. The consolidation and transformation of memory. Neuron 88, 20–32 (2015).

    Google Scholar 

  62. Palva, J. M. & Palva, S. Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series. Neuroimage 62, 2201–2211 (2012).

    Google Scholar 

  63. Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M. & Valera, E. M. Dynamic brain network correlates of spontaneous fluctuations in attention. Cereb. Cortex 27, 1831–1840 (2017).

    Google Scholar 

  64. Shine, J. M. et al. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92, 544–554 (2016).

    Google Scholar 

  65. McGinley, M. J., David, S. V. & McCormick, D. A. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87, 179–192 (2015).

    Google Scholar 

  66. Bayer, J., Gläscher, J., Finsterbusch, J., Schulte, L. H. & Sommer, T. Linear and inverted U-shaped dose-response functions describe estrogen effects on hippocampal activity in young women. Nat. Commun. 9, 1220 (2018).

    Google Scholar 

  67. Baldi, E. & Bucherelli, C. The inverted u-shaped dose-effect relationships in learning and memory: modulation of arousal and consolidation. Nonlinearity Biol. Toxicol. Med. 3, 9–21 (2005).

  68. Zerbes, G., Kausche, F. M., Müller, J. C., Wiedemann, K. & Schwabe, L. Glucocorticoids, noradrenergic arousal, and the control of memory retrieval. J. Cogn. Neurosci. 31, 288–298 (2019).

    Google Scholar 

  69. de Quervain, D. J.-F., Roozendaal, B. & McGaugh, J. L. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394, 787–790 (1998).

    Google Scholar 

  70. Liu, X. et al. Sleep-stage dependent patterning of slowly propagating brain activity. npj Biol. Timing. Sleep 2, 1 (2025).

  71. Siapas, A. G. & Wilson, M. A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).

    Google Scholar 

  72. Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    Google Scholar 

  73. Lecci, S. et al. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci. Adv. 3, e1602026 (2017).

    Google Scholar 

  74. Kjaerby, C. et al. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat. Neurosci. 25, 1059–1070 (2022).

    Google Scholar 

  75. Liu, X. et al. Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. Nat. Commun. 9, 395 (2018).

    Google Scholar 

  76. Turchi, J. et al. The basal forebrain regulates global resting-state fMRI fluctuations. Neuron 97, 940–952.e4 (2018).

    Google Scholar 

  77. Mesulam, M.-M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214, 170–197 (1983).

    Google Scholar 

  78. Pinto, L. et al. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat. Neurosci. 16, 1857–1863 (2013).

    Google Scholar 

  79. Ballinger, E. C., Ananth, M., Talmage, D. A. & Role, L. W. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91, 1199–1218 (2016).

    Google Scholar 

  80. Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. 108, 7641–7646 (2011).

    Google Scholar 

  81. Braun, U. et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci. 112, 11678–11683 (2015).

    Google Scholar 

  82. Huijbers, W. et al. Explaining the encoding/retrieval flip: memory-related deactivations and activations in the posteromedial cortex. Neuropsychologia 50, 3764–3774 (2012).

    Google Scholar 

  83. Daselaar, S. et al. Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Front. Hum. Neurosci. 3, 641 (2009).

  84. Vannini, P. et al. What goes down must come up: role of the posteromedial cortices in encoding and retrieval. Cereb. Cortex 21, 22–34 (2011).

    Google Scholar 

  85. Han, F. et al. The A. D. N. Initiative, Reduced coupling between cerebrospinal fluid flow and global brain activity is linked to Alzheimer disease–related pathology. PLoS Biol. 19, e3001233 (2021).

    Google Scholar 

  86. Han, F., Liu, X., Mailman, R. B., Huang, X. & Liu, X. Resting-state global brain activity affects early β-amyloid accumulation in default mode network. Nat. Commun. 14, 7788 (2023).

    Google Scholar 

  87. Han, F. et al. Reduced coupling between cerebrospinal fluid flow and global brain activity is linked to tau pathology. Alzheimer’s. Dement. 19, e075860 (2023).

    Google Scholar 

  88. Iliff, J. J. et al. Cerebral arterial pulsation drives paravascular CSF—interstitial fluid exchange in the murine brain. J. Neurosci. 33, 18190–18199 (2013).

    Google Scholar 

  89. van Veluw, S. J. et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 105, 549–561.e5 (2020).

    Google Scholar 

  90. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    Google Scholar 

  91. Broggini, T. et al. Long-wavelength traveling waves of vasomotion modulate the perfusion of cortex. Neuron 112, 2349–2367.e8 (2024).

    Google Scholar 

  92. Liu, X. Decoupling between brain activity and cerebrospinal fluid movement in neurological disorders. J. Magn. Reson. Imaging 60, 1743–1752 (2024).

    Google Scholar 

  93. Whitehouse, P. J. et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

    Google Scholar 

  94. Bartus, R. T. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 163, 495–529 (2000).

    Google Scholar 

  95. Drachman, D. A. & Leavitt, J. Human memory and the cholinergic system: a relationship to aging? Arch. Neurol. 30, 113–121 (1974).

    Google Scholar 

  96. Hasselmo, M. E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710–715 (2006).

    Google Scholar 

  97. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    Google Scholar 

  98. Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468 (2014).

    Google Scholar 

  99. Kay, K. N., Rokem, A., Winawer, J., Dougherty, R. F. & Wandell, B. A. GLMdenoise: a fast, automated technique for denoising task-based fMRI data. Front. Neurosci. 7, 247 (2013).

  100. Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. 107, 4734–4739 (2010).

    Google Scholar 

  101. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Google Scholar 

  102. Krauth, A. et al. A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage 49, 2053–2062 (2010).

    Google Scholar 

  103. Edlow, B. L. et al. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J. Neuropathol. Exp. Neurol. 71, 531–546 (2012).

    Google Scholar 

  104. Liu, Z., de Zwart, J. A., van Gelderen, P., Kuo, L.-W. & Duyn, J. H. Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings. Neuroimage 59, 2073–2087 (2012).

    Google Scholar 

  105. Falahpour, M., Chang, C., Wong, C. W. & Liu, T. T. Template-based prediction of vigilance fluctuations in resting-state fMRI. Neuroimage 174, 317–327 (2018).

    Google Scholar 

  106. Stark, E. et al. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron 83, 467–480 (2014).

    Google Scholar 

  107. Kriegeskorte, N. et al. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008).

    Google Scholar 

  108. Papineni, K., Roukos, S., Ward, T. & Zhu, W.-J. BLEU: a method for automatic evaluation of machine translation. In Proc. 40th Annual Meeting on Association for Computational Linguistics ACL ’02 311–318 https://doi.org/10.3115/1073083.1073135) (Association for Computational Linguistics, USA, 2002).

  109. Vedantam, R., Zitnick, C. & Parikh, D. CIDEr: consensus-based image description evaluation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 4566–4575. https://doi.org/10.1109/CVPR.2015.7299087) (IEEE Computer Society, Los Alamitos, CA, USA, 2015).

  110. Denkowski, M. & Lavie, A. Meteor universal: language specific translation evaluation for any target language. In Proc. Ninth Workshop on Statistical Machine Translation, (eds Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Monz, C., Post, M. & Specia, L) 376–380. https://aclanthology.org/W14-3348) (Association for Computational Linguistics, Baltimore, Maryland, USA, 2014).

  111. Lin, C.-Y. ROUGE: a package for automatic evaluation of summaries. In Text Summarization Branches Out 74–81. https://aclanthology.org/W04-1013) (Association for Computational Linguistics, Barcelona, Spain, 2004).

  112. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).

    Google Scholar 

  113. Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Brain Initiative award (1RF1MH123247-01 to X.L.), the NIH R01 award (1R01NS113889-01A1 to X.L.), the Intramural Research Program of the National Institute of Mental Health (ZIA-MH002838 to D.A.L.), and the Intramural Research Program of the National Institute of Neurological Disorders and Stroke (ZIA-NS003027 to J.H.D.). The authors of this work recognize the Penn State Institute for Computational and Data Sciences (RRID:SCR_025154) for providing access to computational research infrastructure within the Roar Core Facility (RRID: SCR_026424)].

Author information

Authors and Affiliations

  1. Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA

    Yifan Yang & Xiao Liu

  2. Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA

    David A. Leopold

  3. Neurophysiology Imaging Facility, National Institutes of Health, Bethesda, MD, USA

    David A. Leopold

  4. Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA

    Jeff H. Duyn

  5. Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, USA

    Xiao Liu

Authors
  1. Yifan Yang
    View author publications

    Search author on:PubMed Google Scholar

  2. David A. Leopold
    View author publications

    Search author on:PubMed Google Scholar

  3. Jeff H. Duyn
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiao Liu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: Y.Y., X.L. Methodology: Y.Y., X.L. Investigation: Y.Y., X.L. Supervision: X.L. Writing—original draft: Y.Y., D.A.L., J.H.D., and X.L. Writing—review and editing: Y.Y., J.H.D., and X.L.

Corresponding author

Correspondence to Xiao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Ryan Raut and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Reporting Summary

Transparent Peer Review file

Source data

Source data file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Leopold, D.A., Duyn, J.H. et al. Sensory encoding and memory retrieval are coordinated with propagating waves in the human brain. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69068-x

Download citation

  • Received: 20 February 2025

  • Accepted: 19 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69068-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing