Abstract
Complex behavior entails a balance between taking in sensory information from the environment and utilizing previously learned internal information. Studies on mice show that the brain continually alternates between outward and inward cognitive modes every few seconds, accompanied by stereotyped cascades of neuronal spiking. Our analysis of large fMRI datasets revealed a similar mechanism in humans. Human brain activity was punctuated every several seconds by coherent, propagating waves emerging in the exteroceptive sensorimotor regions and terminating in the interoceptive default mode network. As in mice, these waves in human fMRI are accompanied by phase-specific enhancements in sensory information encoding and memory retrieval. These findings suggest a conserved feature of mammalian brain physiology that bears directly on the integration of sensory and mnemonic information during everyday behavior.
Data availability
For mice single neuron analysis, we used the Neuropixels Visual Coding Neuropixels and two-photon calcium imaging datasets from the Allen Institute32,33, accessible at https://portal.brain-map.org/overview. For resting-state human fMRI analysis, we used HCP-7T dataset from https://www.humanconnectome.org. We shared our EEG-fMRI dataset at https://openneuro.org/datasets/ds003768. For task human fMRI analysis, we used NSD dataset available at https://naturalscenesdataset.org. Source data are provided with this paper. The processed data in this study is available upon request.
Code availability
The Python code that produced the major results of this paper is available at https://github.com/psu-mcnl/fMRI-Arousal. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.
References
Biswal, B., Zerrin Yetkin, F., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med. 34, 537–541 (1995).
Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).
Yu, M., Sporns, O. & Saykin, A. J. The human connectome in Alzheimer disease—relationship to biomarkers and genetics. Nat. Rev. Neurol. 17, 545–563 (2021).
Smith, S. M. et al. A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1565–1567 (2015).
Zhang, D. & Raichle, M. E. Disease and the brain’s dark energy. Nat. Rev. Neurol. 6, 15–28 (2010).
Matsui, T., Murakami, T. & Ohki, K. Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity. Proc. Natl. Acad. Sci. 113, 6556–6561 (2016).
Gu, Y. et al. Brain activity fluctuations propagate as waves traversing the cortical hierarchy. Cereb. Cortex 31, 3986–4005 (2021).
Yousefi, B., Shin, J., Schumacher, E. H. & Keilholz, S. D. Quasi-periodic patterns of intrinsic brain activity in individuals and their relationship to global signal. Neuroimage 167, 297–308 (2018).
Yousefi, B. & Keilholz, S. Propagating patterns of intrinsic activity along macroscale gradients coordinate functional connections across the whole brain. Neuroimage 231, 117827 (2021).
Raut, R. V. et al. Global waves synchronize the brain’s functional systems with fluctuating arousal. Sci. Adv. 7, eabf2709 (2021).
Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).
Okun, M., Steinmetz, N. A., Lak, A., Dervinis, M. & Harris, K. D. Distinct structure of cortical population activity on fast and infraslow timescales. Cereb. Cortex 29, 2196–2210 (2019).
Liu, X., Leopold, D. A. & Yang, Y. Single-neuron firing cascades underlie global spontaneous brain events. Proc. Natl. Acad. Sci. 118, e2105395118 (2021).
Yang, Y., Leopold, D. A., Duyn, J. H. & Liu, X. Hippocampal replay sequence governed by spontaneous brain-wide dynamics. PNAS Nexus 3, pgae078 (2024).
Yang, Y., Leopold, D. A., Duyn, J. H., Sipe, G. O., & Liu, X. Sensory encoding alternates with hippocampal ripples across cycles of forebrain spiking cascades. Advanced Science, 12, 2406224 (2025).
Hasselmo, M. E. Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav. Brain Res. 67, 1–27 (1995).
Buzsáki, G. Two-stage model of memory trace formation: a role for noisy brain states. Neuroscience 31, 551–570 (1989).
Honey, C. J., Newman, E. L. & Schapiro, A. C. Switching between internal and external modes: a multiscale learning principle. Netw. Neurosci. 1, 339–356 (2017).
Gu, Y. et al. An orderly sequence of autonomic and neural events at transient arousal changes. Neuroimage 264, 119720 (2022).
Yellin, D., Berkovich-Ohana, A. & Malach, R. Coupling between pupil fluctuations and resting-state fMRI uncovers a slow build-up of antagonistic responses in the human cortex. Neuroimage 106, 414–427 (2015).
Bolt, T. et al. Autonomic physiological coupling of the global fMRI signal. Nat Neurosci 28, 1327–1335 (2025)
Podvalny, E., Sanchez-Romero, R. & Cole, M. W. Functionality of arousal-regulating brain circuitry at rest predicts human cognitive abilities. Cereb. Cortex 34, bhae192 (2024).
Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. 102, 9673–9678 (2005).
Mitra, A., Snyder, A. Z., Blazey, T. & Raichle, M. E. Lag threads organize the brain’s intrinsic activity. Proc. Natl. Acad. Sci. 112, E2235–E2244 (2015).
Bolt, T. et al. A parsimonious description of global functional brain organization in three spatiotemporal patterns. Nat. Neurosci. 25, 1093–1103 (2022).
Logothetis, N. K. et al. Hippocampal–cortical interaction during periods of subcortical silence. Nature 491, 547–553 (2012).
Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).
Yoss, R. E., Moyer, N. J. & Hollenhorst, R. W. Pupil size and spontaneous pupillary waves associated with alertness, drowsiness, and sleep. Neurology 20, 545 (1970).
Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84, 355–362 (2014).
Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).
de Vries, S. E. J. et al. A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nat. Neurosci. 23, 138–151 (2020).
Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).
Van Essen, D. C. et al. The human connectome project: a data acquisition perspective. Neuroimage 62, 2222–2231 (2012).
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. 113, 12574–12579 (2016).
Allen, E. J. et al. A massive 7 T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nat. Neurosci. 25, 116–126 (2022).
Li, W., Zhu, L., Wen, L. & Yang, Y. DeCap: decoding CLIP latents for zero-shot captioning via text-only training. In The Eleventh International Conference on Learning Representations https://openreview.net/forum?id=Lt8bMlhiwx2) (2023).
Radford, A. et al. Learning transferable visual models from natural language supervision. In Proc. 38th International Conference on Machine Learning Vol. 139 of Proceedings of Machine Learning Research 8748–8763 (eds Meila, M., Zhang, T.) https://proceedings.mlr.press/v139/radford21a.html) (PMLR, 2021).
Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A Simple framework for contrastive learning of visual representations. In Proc. 37th International Conference on Machine Learning Vol. 119 of Proceedings of Machine Learning Research 1597–1607 (eds III, H. D. & Singh, A) https://proceedings.mlr.press/v119/chen20j.html) (PMLR, 2020).
van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Aggleton, J. P. et al. Hippocampal–anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur. J. Neurosci. 31, 2292–2307 (2010).
Hwang, K., Shine, J. M., Cole, M. W. & Sorenson, E. Thalamocortical contributions to cognitive task activity. Elife 11, e81282 (2022).
Higgins, C. et al. Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron 109, 882–893.e7 (2021).
Norman, Y., Raccah, O., Liu, S., Parvizi, J. & Malach, R. Hippocampal ripples and their coordinated dialogue with the default mode network during recent and remote recollection. Neuron 109, 2767–2780.e5 (2021).
Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).
Livingstone, M. S. & Hubel, D. H. Effects of sleep and arousal on the processing of visual information in the cat. Nature 291, 554–561 (1981).
Hasenstaub, A., Sachdev, R. N. S. & McCormick, D. A. State changes rapidly modulate cortical neuronal responsiveness. J. Neurosci. 27, 9607–9622 (2007).
Fox, M. D., Snyder, A. Z., Zacks, J. M. & Raichle, M. E. Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat. Neurosci. 9, 23–25 (2006).
He, B. J. Spontaneous and task-evoked brain activity negatively interact. J. Neurosci. 33, 4672–4682 (2013).
McGinley, M. J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).
Chen, W., Park, K., Pan, Y., Koretsky, A. P. & Du, C. Interactions between stimuli-evoked cortical activity and spontaneous low frequency oscillations measured with neuronal calcium. Neuroimage 210, 116554 (2020).
Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).
Euston, D. R., Tatsuno, M. & McNaughton, B. L. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318, 1147–1150 (2007).
Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 365, eaax1030 (2019).
Vaz, A. P., Inati, S. K., Brunel, N. & Zaghloul, K. A. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science 363, 975–978 (2019).
Sakon, J. J. & Kahana, M. J. Hippocampal ripples signal contextually mediated episodic recall. Proc. Natl. Acad. Sci. 119, e2201657119 (2022).
Karimi Abadchi, J. et al. Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples. Elife 9, e51972 (2020).
Kaplan, R. et al. Hippocampal sharp-wave ripples influence selective activation of the default mode network. Curr. Biol. 26, 686–691 (2016).
Klinzing, J. G., Niethard, N. & Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 22, 1598–1610 (2019).
Dudai, Y., Karni, A. & Born, J. The consolidation and transformation of memory. Neuron 88, 20–32 (2015).
Palva, J. M. & Palva, S. Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series. Neuroimage 62, 2201–2211 (2012).
Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M. & Valera, E. M. Dynamic brain network correlates of spontaneous fluctuations in attention. Cereb. Cortex 27, 1831–1840 (2017).
Shine, J. M. et al. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92, 544–554 (2016).
McGinley, M. J., David, S. V. & McCormick, D. A. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87, 179–192 (2015).
Bayer, J., Gläscher, J., Finsterbusch, J., Schulte, L. H. & Sommer, T. Linear and inverted U-shaped dose-response functions describe estrogen effects on hippocampal activity in young women. Nat. Commun. 9, 1220 (2018).
Baldi, E. & Bucherelli, C. The inverted u-shaped dose-effect relationships in learning and memory: modulation of arousal and consolidation. Nonlinearity Biol. Toxicol. Med. 3, 9–21 (2005).
Zerbes, G., Kausche, F. M., Müller, J. C., Wiedemann, K. & Schwabe, L. Glucocorticoids, noradrenergic arousal, and the control of memory retrieval. J. Cogn. Neurosci. 31, 288–298 (2019).
de Quervain, D. J.-F., Roozendaal, B. & McGaugh, J. L. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394, 787–790 (1998).
Liu, X. et al. Sleep-stage dependent patterning of slowly propagating brain activity. npj Biol. Timing. Sleep 2, 1 (2025).
Siapas, A. G. & Wilson, M. A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).
Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).
Lecci, S. et al. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci. Adv. 3, e1602026 (2017).
Kjaerby, C. et al. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat. Neurosci. 25, 1059–1070 (2022).
Liu, X. et al. Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. Nat. Commun. 9, 395 (2018).
Turchi, J. et al. The basal forebrain regulates global resting-state fMRI fluctuations. Neuron 97, 940–952.e4 (2018).
Mesulam, M.-M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214, 170–197 (1983).
Pinto, L. et al. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat. Neurosci. 16, 1857–1863 (2013).
Ballinger, E. C., Ananth, M., Talmage, D. A. & Role, L. W. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91, 1199–1218 (2016).
Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. 108, 7641–7646 (2011).
Braun, U. et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci. 112, 11678–11683 (2015).
Huijbers, W. et al. Explaining the encoding/retrieval flip: memory-related deactivations and activations in the posteromedial cortex. Neuropsychologia 50, 3764–3774 (2012).
Daselaar, S. et al. Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Front. Hum. Neurosci. 3, 641 (2009).
Vannini, P. et al. What goes down must come up: role of the posteromedial cortices in encoding and retrieval. Cereb. Cortex 21, 22–34 (2011).
Han, F. et al. The A. D. N. Initiative, Reduced coupling between cerebrospinal fluid flow and global brain activity is linked to Alzheimer disease–related pathology. PLoS Biol. 19, e3001233 (2021).
Han, F., Liu, X., Mailman, R. B., Huang, X. & Liu, X. Resting-state global brain activity affects early β-amyloid accumulation in default mode network. Nat. Commun. 14, 7788 (2023).
Han, F. et al. Reduced coupling between cerebrospinal fluid flow and global brain activity is linked to tau pathology. Alzheimer’s. Dement. 19, e075860 (2023).
Iliff, J. J. et al. Cerebral arterial pulsation drives paravascular CSF—interstitial fluid exchange in the murine brain. J. Neurosci. 33, 18190–18199 (2013).
van Veluw, S. J. et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 105, 549–561.e5 (2020).
Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).
Broggini, T. et al. Long-wavelength traveling waves of vasomotion modulate the perfusion of cortex. Neuron 112, 2349–2367.e8 (2024).
Liu, X. Decoupling between brain activity and cerebrospinal fluid movement in neurological disorders. J. Magn. Reson. Imaging 60, 1743–1752 (2024).
Whitehouse, P. J. et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).
Bartus, R. T. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 163, 495–529 (2000).
Drachman, D. A. & Leavitt, J. Human memory and the cholinergic system: a relationship to aging? Arch. Neurol. 30, 113–121 (1974).
Hasselmo, M. E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710–715 (2006).
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).
Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468 (2014).
Kay, K. N., Rokem, A., Winawer, J., Dougherty, R. F. & Wandell, B. A. GLMdenoise: a fast, automated technique for denoising task-based fMRI data. Front. Neurosci. 7, 247 (2013).
Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. 107, 4734–4739 (2010).
Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).
Krauth, A. et al. A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage 49, 2053–2062 (2010).
Edlow, B. L. et al. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J. Neuropathol. Exp. Neurol. 71, 531–546 (2012).
Liu, Z., de Zwart, J. A., van Gelderen, P., Kuo, L.-W. & Duyn, J. H. Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings. Neuroimage 59, 2073–2087 (2012).
Falahpour, M., Chang, C., Wong, C. W. & Liu, T. T. Template-based prediction of vigilance fluctuations in resting-state fMRI. Neuroimage 174, 317–327 (2018).
Stark, E. et al. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron 83, 467–480 (2014).
Kriegeskorte, N. et al. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008).
Papineni, K., Roukos, S., Ward, T. & Zhu, W.-J. BLEU: a method for automatic evaluation of machine translation. In Proc. 40th Annual Meeting on Association for Computational Linguistics ACL ’02 311–318 https://doi.org/10.3115/1073083.1073135) (Association for Computational Linguistics, USA, 2002).
Vedantam, R., Zitnick, C. & Parikh, D. CIDEr: consensus-based image description evaluation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 4566–4575. https://doi.org/10.1109/CVPR.2015.7299087) (IEEE Computer Society, Los Alamitos, CA, USA, 2015).
Denkowski, M. & Lavie, A. Meteor universal: language specific translation evaluation for any target language. In Proc. Ninth Workshop on Statistical Machine Translation, (eds Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Monz, C., Post, M. & Specia, L) 376–380. https://aclanthology.org/W14-3348) (Association for Computational Linguistics, Baltimore, Maryland, USA, 2014).
Lin, C.-Y. ROUGE: a package for automatic evaluation of summaries. In Text Summarization Branches Out 74–81. https://aclanthology.org/W04-1013) (Association for Computational Linguistics, Barcelona, Spain, 2004).
Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).
Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
Acknowledgements
This work was supported by the Brain Initiative award (1RF1MH123247-01 to X.L.), the NIH R01 award (1R01NS113889-01A1 to X.L.), the Intramural Research Program of the National Institute of Mental Health (ZIA-MH002838 to D.A.L.), and the Intramural Research Program of the National Institute of Neurological Disorders and Stroke (ZIA-NS003027 to J.H.D.). The authors of this work recognize the Penn State Institute for Computational and Data Sciences (RRID:SCR_025154) for providing access to computational research infrastructure within the Roar Core Facility (RRID: SCR_026424)].
Author information
Authors and Affiliations
Contributions
Conceptualization: Y.Y., X.L. Methodology: Y.Y., X.L. Investigation: Y.Y., X.L. Supervision: X.L. Writing—original draft: Y.Y., D.A.L., J.H.D., and X.L. Writing—review and editing: Y.Y., J.H.D., and X.L.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Ryan Raut and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Yang, Y., Leopold, D.A., Duyn, J.H. et al. Sensory encoding and memory retrieval are coordinated with propagating waves in the human brain. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69068-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69068-x