Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Bell correlations between momentum-entangled pairs of 4He* atoms
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Bell correlations between momentum-entangled pairs of 4He* atoms

  • Y. S. Athreya1,
  • S. Kannan  ORCID: orcid.org/0000-0002-9004-87071,
  • X. T. Yan1,
  • R. J. Lewis-Swan  ORCID: orcid.org/0000-0002-0201-281X2,3,
  • K. V. Kheruntsyan  ORCID: orcid.org/0000-0001-5813-36214,
  • A. G. Truscott  ORCID: orcid.org/0000-0003-2106-86131 &
  • …
  • S. S. Hodgman  ORCID: orcid.org/0000-0002-2417-350X1 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atom optics
  • Quantum mechanics
  • Single photons and quantum effects
  • Ultracold gases

Abstract

Nonlocal entanglement between pair-correlated particles is a highly counter-intuitive aspect of quantum mechanics, where measurement on one particle can instantly affect the other, regardless of distance. While the rigorous Bell’s inequality framework has enabled the demonstration of such entanglement in photons and atomic internal states, no experiment has yet involved motional states of massive particles. Here we report the experimental observation of Bell correlations in motional states of momentum-entangled ultracold helium atoms. Momentum-entangled pairs are first generated via s-wave collisions. Using a Rarity-Tapster interferometer and a Bell-test framework, we observe atom-atom correlations required for violation of a Bell inequality. This result shows the potential of ultracold atoms for fundamental tests of quantum mechanics and opens new avenues to studying gravitational effects in quantum states.

Data availability

The data that support the findings of this study are available from Zenodo at63.

References

  1. Bell, J. S. Speakable and Unspeakable in Quantum Mechanics. Cambridge Univ. Press: Cambridge, 1987.

    Google Scholar 

  2. Aspect, A. Bell’s theorem: The naive view of an experimentalist. arXiv:quant-ph/0402001 https://doi.org/10.48550/arXiv.quant-ph/0402001 (2004).

  3. Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981).

    Google Scholar 

  4. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time- varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).

    Google Scholar 

  5. Giustina, M. et al. Significant-loophole-free test of bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).

    Google Scholar 

  6. Shalm, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).

    Google Scholar 

  7. Rowe, M. A. et al. Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001).

    Google Scholar 

  8. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Google Scholar 

  9. Schmied, R. et al. Bell correlations in a Bose-Einstein condensate. Science 352, 441–444 (2016).

    Google Scholar 

  10. Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    Google Scholar 

  11. Shin, D. K. et al. Bell correlations between spatially separated pairs of atoms. Nat. Commun. 10, 4447 (2019).

    Google Scholar 

  12. Penrose, R. On Gravity’s role in Quantum State Reduction. Gen. Relat. Gravit. 28, 581–600 (1996).

    Google Scholar 

  13. Khrennikov, A. The present situation in quantum theory and its merging with general relativity. Found. Phys. 47, 1077–1099 (2017).

    Google Scholar 

  14. Howl, R., Hackermüller, L., Bruschi, D. E. & Fuentes, I. Gravity in the quantum lab. Adv. Phys. 3, 1383184 (2018).

    Google Scholar 

  15. Howl, R., Penrose, R. & Fuentes, I. Exploring the unification of quantum theory and general relativity with a Bose-Einstein condensate. New J. Phys. 21, 043047 (2019).

    Google Scholar 

  16. Ashtekar, A. & Bianchi, E. A short review of loop quantum gravity. Rep. Prog. Phys. 84, 042001 (2021).

    Google Scholar 

  17. Rarity, J. G. & Tapster, P. R. Experimental violation of Bell’s inequality based on phase and momentum. Phys. Rev. Lett. 64, 2495–2498 (1990).

    Google Scholar 

  18. Vassen, W. et al. Cold and trapped metastable noble gases. Rev. Mod. Phys. 84, 175–210 (2012).

    Google Scholar 

  19. Lewis-Swan, R. J. & Kheruntsyan, K. V. Proposal for a motional-state Bell inequality test with ultracold atoms. Phys. Rev. A 91, 052114 (2015).

    Google Scholar 

  20. Kofler, J. et al. Einstein-podolsky-rosen correlations from colliding bose-einstein condensates. Phys. Rev. A 86, 032115 (2012).

    Google Scholar 

  21. Keller, M. et al. Bose-einstein condensate of metastable helium for quantum correlation experiments. Phys. Rev. A 90, 063607 (2014).

    Google Scholar 

  22. Dussarrat, P. et al. Two-particle four-mode interferometer for atoms. Phys. Rev. Lett. 119, 173202 (2017).

    Google Scholar 

  23. Thomas, K. F. et al. A matter-wave Rarity–Tapster interferometer to demonstrate non-locality. Eur. Phys. J. D 76, 244 (2022).

    Google Scholar 

  24. Leprince, C. et al. Coherent coupling of momentum states: selectivity and phase control. Phys. Rev. A 111, 063304 (2025).

    Google Scholar 

  25. Perrier, M. et al. Thermal counting statistics in an atomic two-mode squeezed vacuum state. SciPost Phys. 7, 002 (2019).

    Google Scholar 

  26. Perrin, A. et al. Observation of atom pairs in spontaneous four-wave mixing of two colliding Bose-Einstein condensates. Phys. Rev. Lett. 99, 150405 (2007).

    Google Scholar 

  27. Perrin, A. et al. Atomic four-wave mixing via condensate collisions. New J. Phys. 10, 045021 (2008).

    Google Scholar 

  28. Khakimov, R. I. et al. Ghost imaging with atoms. Nature 540, 100–103 (2016).

    Google Scholar 

  29. Kim, K., Hur, J., Huh, S., Choi, S. & Choi, J. -y Emission of spin-correlated matter-wave jets from spinor bose-einstein condensates. Phys. Rev. Lett. 127, 043401 (2021).

    Google Scholar 

  30. Hilligsøe, K. M. & Mølmer, K. Phase-matched four wave mixing and quantum beam splitting of matter waves in a periodic potential. Phys. Rev. A 71, 041602 (2005).

    Google Scholar 

  31. Campbell, G. K. et al. Parametric amplification of scattered atom pairs. Phys. Rev. Lett. 96, 020406 (2006).

    Google Scholar 

  32. Bücker, R. et al. Twin-atom beams. Nat. Phys. 7, 608–611 (2011).

    Google Scholar 

  33. Bonneau, M. et al. Tunable source of correlated atom beams. Phys. Rev. A 87, 061603 (2013).

    Google Scholar 

  34. Lopes, R. et al. Atomic hong–ou–mandel experiment. Nature 520, 66–68 (2015).

    Google Scholar 

  35. Finger, F. et al. Spin- and momentum-correlated atom pairs mediated by photon exchange and seeded by vacuum fluctuations. Phys. Rev. Lett. 132, 093402 (2024).

    Google Scholar 

  36. Hodgman, S. S. et al. Metastable helium: a new determination of the longest atomic excited-state lifetime. Phys. Rev. Lett. 103, 053002 (2009).

    Google Scholar 

  37. Gupta, S., Leanhardt, A. E., Cronin, A. D. & Pritchard, D. E. Coherent manipulation of atoms with standing light waves. Comptes Rendus de l’Académie des Sciences - Series IV - Physics 2, 479–495 (2001).

    Google Scholar 

  38. Couteau, C. Spontaneous parametric down-conversion. Contemp. Phys. 59, 291–304 (2018).

    Google Scholar 

  39. Hodgman, S. S., Khakimov, R. I., Lewis-Swan, R. J., Truscott, A. G. & Kheruntsyan, K. V. Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope. Phys. Rev. Lett. 118, 240402 (2017).

    Google Scholar 

  40. Manning, A. G., Hodgman, S. S., Dall, R. G., Johnsson, M. T. & Truscott, A. G. The Hanbury Brown-Twiss effect in a pulsed atom laser. Opt. Express 18, 18712 (2010).

    Google Scholar 

  41. Ögren, M. & Kheruntsyan, K. V. Atom-atom correlations in colliding Bose-Einstein condensates. Phys. Rev. A 79, 021606 (2009).

    Google Scholar 

  42. Wasak, T. & Chwedeńczuk, J. Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates. Phys. Rev. Lett. 120, 140406 (2018).

    Google Scholar 

  43. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Google Scholar 

  44. Clauser, J. F. & Shimony, A. Bell’s theorem. Experimental tests and implications. Rep. Prog. Phys. 41, 1881 (1978).

    Google Scholar 

  45. Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007).

    Google Scholar 

  46. Cavalcanti, E. G., Jones, S. J., Wiseman, H. M. & Reid, M. D. Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys. Rev. A 80, 032112 (2009).

    Google Scholar 

  47. Jones, S. J., Wiseman, H. M. & Doherty, A. C. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007).

    Google Scholar 

  48. Cavalcanti, E. G., Foster, C. J., Fuwa, M. & Wiseman, H. M. Analog of the Clauser–Horne–Shimony–Holt inequality for steering. J. Opt. Soc. Am. B 32, A74–A81 (2015).

    Google Scholar 

  49. Yan, X. T., Kannan, S., Athreya, Y. S., Truscott, A. G. & Hodgman, S. S. Proposal for a Bell Test with Entangled Atoms of Different Mass. Quantum 9, 1939 (2025).

    Google Scholar 

  50. Geiger, R. & Trupke, M. Proposal for a quantum test of the weak equivalence principle with entangled atomic species. Phys. Rev. Lett. 120, 043602 (2018).

    Google Scholar 

  51. Alvarez, E. Quantum gravity: an introduction to some recent results. Rev. Mod. Phys. 61, 561–604 (1989).

    Google Scholar 

  52. Zych, M., Costa, F., Pikovski, I. & Brukner, Č Quantum interferometric visibility as a witness of general relativistic proper time. Nat. Commun. 2, 505 (2011).

    Google Scholar 

  53. Vowe, S. et al. Light-pulse atom interferometric test of continuous spontaneous localization. Phys. Rev. A 106, 043317 (2022).

    Google Scholar 

  54. Ciliberto, G., Emig, S., Pavloff, N. & Isoard, M. Violation of bell inequalities in an analog black hole. Phys. Rev. A 109, 063325 (2024).

    Google Scholar 

  55. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Google Scholar 

  56. O’Sullivan-Hale, M. N., Ali Khan, I., Boyd, R. W. & Howell, J. C. Pixel entanglement: Experimental realization of optically entangled d = 3 and d = 6 qudits. Phys. Rev. Lett. 94, 220501 (2005).

    Google Scholar 

  57. Walborn, S. P., Lemelle, D. S., Almeida, M. P. & Ribeiro, P. H. S. Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006).

    Google Scholar 

  58. Anders, F. et al. Momentum entanglement for atom interferometry. Phys. Rev. Lett. 127, 140402 (2021).

    Google Scholar 

  59. Fadel, M., Roux, N. & Gessner, M. Quantum metrology with a continuous-variable system. Rep. Prog. Phys. 88, 106001 (2025).

    Google Scholar 

  60. Dall, R. G. & Truscott, A. G. Bose–Einstein condensation of metastable helium in a bi-planar quadrupole Ioffe configuration trap. Opt. Commun. 270, 255–261 (2007).

    Google Scholar 

  61. Kannan, S. et al. Measurement of the s -wave scattering length between metastable helium isotopes. Phys. Rev. A 110, 063324 (2024).

    Google Scholar 

  62. Henson, B. M. et al. Bogoliubov-Cherenkov radiation in an atom laser. Phys. Rev. A 97, 063601 (2018).

    Google Scholar 

  63. Research data available from Zenodo at https://doi.org/10.5281/zenodo.17939482.

Download references

Acknowledgements

We would like to thank K.F. Thomas for technical assistance with the early stages of the experiment, and S.A. Haine for helpful discussions. This work was supported through the Australian Research Council (ARC) Discovery Projects, Grant No. DP190103021, DP240101346, DP240101441 and DP240101033. S.S.H. was supported by the Australian Research Council Future Fellowship Grant No. FT220100670. S.K. was supported by an Australian Government Research Training Program scholarship.

Author information

Authors and Affiliations

  1. Research School of Physics, Australian National University, Canberra, Australia

    Y. S. Athreya, S. Kannan, X. T. Yan, A. G. Truscott & S. S. Hodgman

  2. Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma, USA

    R. J. Lewis-Swan

  3. Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma, USA

    R. J. Lewis-Swan

  4. School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia

    K. V. Kheruntsyan

Authors
  1. Y. S. Athreya
    View author publications

    Search author on:PubMed Google Scholar

  2. S. Kannan
    View author publications

    Search author on:PubMed Google Scholar

  3. X. T. Yan
    View author publications

    Search author on:PubMed Google Scholar

  4. R. J. Lewis-Swan
    View author publications

    Search author on:PubMed Google Scholar

  5. K. V. Kheruntsyan
    View author publications

    Search author on:PubMed Google Scholar

  6. A. G. Truscott
    View author publications

    Search author on:PubMed Google Scholar

  7. S. S. Hodgman
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.S.A. and S.K. performed the experiment and collected the data under the supervision of A.G.T. and S.S.H. All authors contributed to the design of the experiment, the conceptual formulation of the physics and the interpretation of the data. Y.S.A., R.J.L.-S., K.V.K. and S.S.H. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to S. S. Hodgman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jan Chwedenczuk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athreya, Y.S., Kannan, S., Yan, X.T. et al. Bell correlations between momentum-entangled pairs of 4He* atoms. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69070-3

Download citation

  • Received: 29 April 2025

  • Accepted: 19 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69070-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing