Abstract
Nonlocal entanglement between pair-correlated particles is a highly counter-intuitive aspect of quantum mechanics, where measurement on one particle can instantly affect the other, regardless of distance. While the rigorous Bell’s inequality framework has enabled the demonstration of such entanglement in photons and atomic internal states, no experiment has yet involved motional states of massive particles. Here we report the experimental observation of Bell correlations in motional states of momentum-entangled ultracold helium atoms. Momentum-entangled pairs are first generated via s-wave collisions. Using a Rarity-Tapster interferometer and a Bell-test framework, we observe atom-atom correlations required for violation of a Bell inequality. This result shows the potential of ultracold atoms for fundamental tests of quantum mechanics and opens new avenues to studying gravitational effects in quantum states.
Data availability
The data that support the findings of this study are available from Zenodo at63.
References
Bell, J. S. Speakable and Unspeakable in Quantum Mechanics. Cambridge Univ. Press: Cambridge, 1987.
Aspect, A. Bell’s theorem: The naive view of an experimentalist. arXiv:quant-ph/0402001 https://doi.org/10.48550/arXiv.quant-ph/0402001 (2004).
Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981).
Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time- varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).
Giustina, M. et al. Significant-loophole-free test of bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).
Shalm, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).
Rowe, M. A. et al. Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001).
Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).
Schmied, R. et al. Bell correlations in a Bose-Einstein condensate. Science 352, 441–444 (2016).
Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).
Shin, D. K. et al. Bell correlations between spatially separated pairs of atoms. Nat. Commun. 10, 4447 (2019).
Penrose, R. On Gravity’s role in Quantum State Reduction. Gen. Relat. Gravit. 28, 581–600 (1996).
Khrennikov, A. The present situation in quantum theory and its merging with general relativity. Found. Phys. 47, 1077–1099 (2017).
Howl, R., Hackermüller, L., Bruschi, D. E. & Fuentes, I. Gravity in the quantum lab. Adv. Phys. 3, 1383184 (2018).
Howl, R., Penrose, R. & Fuentes, I. Exploring the unification of quantum theory and general relativity with a Bose-Einstein condensate. New J. Phys. 21, 043047 (2019).
Ashtekar, A. & Bianchi, E. A short review of loop quantum gravity. Rep. Prog. Phys. 84, 042001 (2021).
Rarity, J. G. & Tapster, P. R. Experimental violation of Bell’s inequality based on phase and momentum. Phys. Rev. Lett. 64, 2495–2498 (1990).
Vassen, W. et al. Cold and trapped metastable noble gases. Rev. Mod. Phys. 84, 175–210 (2012).
Lewis-Swan, R. J. & Kheruntsyan, K. V. Proposal for a motional-state Bell inequality test with ultracold atoms. Phys. Rev. A 91, 052114 (2015).
Kofler, J. et al. Einstein-podolsky-rosen correlations from colliding bose-einstein condensates. Phys. Rev. A 86, 032115 (2012).
Keller, M. et al. Bose-einstein condensate of metastable helium for quantum correlation experiments. Phys. Rev. A 90, 063607 (2014).
Dussarrat, P. et al. Two-particle four-mode interferometer for atoms. Phys. Rev. Lett. 119, 173202 (2017).
Thomas, K. F. et al. A matter-wave Rarity–Tapster interferometer to demonstrate non-locality. Eur. Phys. J. D 76, 244 (2022).
Leprince, C. et al. Coherent coupling of momentum states: selectivity and phase control. Phys. Rev. A 111, 063304 (2025).
Perrier, M. et al. Thermal counting statistics in an atomic two-mode squeezed vacuum state. SciPost Phys. 7, 002 (2019).
Perrin, A. et al. Observation of atom pairs in spontaneous four-wave mixing of two colliding Bose-Einstein condensates. Phys. Rev. Lett. 99, 150405 (2007).
Perrin, A. et al. Atomic four-wave mixing via condensate collisions. New J. Phys. 10, 045021 (2008).
Khakimov, R. I. et al. Ghost imaging with atoms. Nature 540, 100–103 (2016).
Kim, K., Hur, J., Huh, S., Choi, S. & Choi, J. -y Emission of spin-correlated matter-wave jets from spinor bose-einstein condensates. Phys. Rev. Lett. 127, 043401 (2021).
Hilligsøe, K. M. & Mølmer, K. Phase-matched four wave mixing and quantum beam splitting of matter waves in a periodic potential. Phys. Rev. A 71, 041602 (2005).
Campbell, G. K. et al. Parametric amplification of scattered atom pairs. Phys. Rev. Lett. 96, 020406 (2006).
Bücker, R. et al. Twin-atom beams. Nat. Phys. 7, 608–611 (2011).
Bonneau, M. et al. Tunable source of correlated atom beams. Phys. Rev. A 87, 061603 (2013).
Lopes, R. et al. Atomic hong–ou–mandel experiment. Nature 520, 66–68 (2015).
Finger, F. et al. Spin- and momentum-correlated atom pairs mediated by photon exchange and seeded by vacuum fluctuations. Phys. Rev. Lett. 132, 093402 (2024).
Hodgman, S. S. et al. Metastable helium: a new determination of the longest atomic excited-state lifetime. Phys. Rev. Lett. 103, 053002 (2009).
Gupta, S., Leanhardt, A. E., Cronin, A. D. & Pritchard, D. E. Coherent manipulation of atoms with standing light waves. Comptes Rendus de l’Académie des Sciences - Series IV - Physics 2, 479–495 (2001).
Couteau, C. Spontaneous parametric down-conversion. Contemp. Phys. 59, 291–304 (2018).
Hodgman, S. S., Khakimov, R. I., Lewis-Swan, R. J., Truscott, A. G. & Kheruntsyan, K. V. Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope. Phys. Rev. Lett. 118, 240402 (2017).
Manning, A. G., Hodgman, S. S., Dall, R. G., Johnsson, M. T. & Truscott, A. G. The Hanbury Brown-Twiss effect in a pulsed atom laser. Opt. Express 18, 18712 (2010).
Ögren, M. & Kheruntsyan, K. V. Atom-atom correlations in colliding Bose-Einstein condensates. Phys. Rev. A 79, 021606 (2009).
Wasak, T. & Chwedeńczuk, J. Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates. Phys. Rev. Lett. 120, 140406 (2018).
Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 23, 880–884 (1969).
Clauser, J. F. & Shimony, A. Bell’s theorem. Experimental tests and implications. Rep. Prog. Phys. 41, 1881 (1978).
Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007).
Cavalcanti, E. G., Jones, S. J., Wiseman, H. M. & Reid, M. D. Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys. Rev. A 80, 032112 (2009).
Jones, S. J., Wiseman, H. M. & Doherty, A. C. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007).
Cavalcanti, E. G., Foster, C. J., Fuwa, M. & Wiseman, H. M. Analog of the Clauser–Horne–Shimony–Holt inequality for steering. J. Opt. Soc. Am. B 32, A74–A81 (2015).
Yan, X. T., Kannan, S., Athreya, Y. S., Truscott, A. G. & Hodgman, S. S. Proposal for a Bell Test with Entangled Atoms of Different Mass. Quantum 9, 1939 (2025).
Geiger, R. & Trupke, M. Proposal for a quantum test of the weak equivalence principle with entangled atomic species. Phys. Rev. Lett. 120, 043602 (2018).
Alvarez, E. Quantum gravity: an introduction to some recent results. Rev. Mod. Phys. 61, 561–604 (1989).
Zych, M., Costa, F., Pikovski, I. & Brukner, Č Quantum interferometric visibility as a witness of general relativistic proper time. Nat. Commun. 2, 505 (2011).
Vowe, S. et al. Light-pulse atom interferometric test of continuous spontaneous localization. Phys. Rev. A 106, 043317 (2022).
Ciliberto, G., Emig, S., Pavloff, N. & Isoard, M. Violation of bell inequalities in an analog black hole. Phys. Rev. A 109, 063325 (2024).
Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).
O’Sullivan-Hale, M. N., Ali Khan, I., Boyd, R. W. & Howell, J. C. Pixel entanglement: Experimental realization of optically entangled d = 3 and d = 6 qudits. Phys. Rev. Lett. 94, 220501 (2005).
Walborn, S. P., Lemelle, D. S., Almeida, M. P. & Ribeiro, P. H. S. Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006).
Anders, F. et al. Momentum entanglement for atom interferometry. Phys. Rev. Lett. 127, 140402 (2021).
Fadel, M., Roux, N. & Gessner, M. Quantum metrology with a continuous-variable system. Rep. Prog. Phys. 88, 106001 (2025).
Dall, R. G. & Truscott, A. G. Bose–Einstein condensation of metastable helium in a bi-planar quadrupole Ioffe configuration trap. Opt. Commun. 270, 255–261 (2007).
Kannan, S. et al. Measurement of the s -wave scattering length between metastable helium isotopes. Phys. Rev. A 110, 063324 (2024).
Henson, B. M. et al. Bogoliubov-Cherenkov radiation in an atom laser. Phys. Rev. A 97, 063601 (2018).
Research data available from Zenodo at https://doi.org/10.5281/zenodo.17939482.
Acknowledgements
We would like to thank K.F. Thomas for technical assistance with the early stages of the experiment, and S.A. Haine for helpful discussions. This work was supported through the Australian Research Council (ARC) Discovery Projects, Grant No. DP190103021, DP240101346, DP240101441 and DP240101033. S.S.H. was supported by the Australian Research Council Future Fellowship Grant No. FT220100670. S.K. was supported by an Australian Government Research Training Program scholarship.
Author information
Authors and Affiliations
Contributions
Y.S.A. and S.K. performed the experiment and collected the data under the supervision of A.G.T. and S.S.H. All authors contributed to the design of the experiment, the conceptual formulation of the physics and the interpretation of the data. Y.S.A., R.J.L.-S., K.V.K. and S.S.H. wrote the manuscript with input from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Jan Chwedenczuk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Athreya, Y.S., Kannan, S., Yan, X.T. et al. Bell correlations between momentum-entangled pairs of 4He* atoms. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69070-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69070-3