Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
A primary auditory cortex-anterior cingulate cortex circuit underlying cross-modal visceral pain modulation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

A primary auditory cortex-anterior cingulate cortex circuit underlying cross-modal visceral pain modulation

  • Yang Yu1,2 na1,
  • Wen-Qiong Kuang2 na1,
  • Yu-Hang He2,
  • Qian-Qian Chen2,
  • Yong-Chang Li2,
  • Fu-Chao Zhang2,
  • Hua-Dong Ni  ORCID: orcid.org/0000-0001-7092-34743 &
  • …
  • Guang-Yin Xu  ORCID: orcid.org/0000-0002-5465-58921,2,4 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Irritable bowel syndrome
  • Neural circuits
  • Sensory processing

Abstract

Visceral pain represents an unmet clinical need due to the lack of safe and generalizable therapies. Given the analgesic potential of music and the underlying crosstalk between auditory and nociceptive pathways, this study aims to delineate the neural circuits interfacing auditory processing and visceral pain modulation. Using a mouse model of early-life stress, we identify a cortico-cortical circuit linking the primary auditory cortex (Au1) to the anterior cingulate cortex (ACC) that mediates stress-induced visceral pain. Mechanistically, early-life stress suppresses the activity of Au1 inhibitory (GABAergic, Au1GABA) neurons, which disinhibits downstream ACC excitatory (glutamatergic, ACCGlu) neurons, thereby driving visceral hypersensitivity. Notably, music intervention alleviates visceral pain by restoring Au1GABA neuronal activity and suppressing ACCGlu activity. In conclusion, this study unveils the Au1-ACC circuit as a critical hub for stress-induced visceral hypersensitivity and music-induced analgesia, providing a mechanistic foundation for clinical translation of music therapy in visceral pain management.

Data availability

All the data generated in the current study are presented in the figures and supplementary materials. The relevant raw data are provided as a Source Data file. Source data are provided with this paper.

Code availability

Calcium responses were analysed using a custom MATLAB script provided by ThinkerTech (Nanjing, China). The script with detailed instructions can be downloaded from the repository below: https://github.com/mdp10yy/TrippleColorMultiChannel-Script.git.

References

  1. Grundy, L., Erickson, A. & Brierley, S. M. Visceral Pain. Annu. Rev. Physiol. 81, 261–284 (2019).

    Google Scholar 

  2. Papale, A. J., Flattau, R., Vithlani, N., Mahajan, D., & Nadella, S. A review of pharmacologic and non-pharmacologic therapies in the management of irritable bowel syndrome: current recommendations and evidence. J. Clin. Med. 13, 6948 (2024).

  3. Ford, A. C., Vanner, S., Kashyap, P. C. & Nasser, Y. Chronic visceral pain: new peripheral mechanistic insights and resulting treatments. Gastroenterology 166, 976–994 (2024).

    Google Scholar 

  4. Ford, A. C. et al. Efficacy of 5-HT3 antagonists and 5-HT4 agonists in irritable bowel syndrome: systematic review and meta-analysis. Am. J. Gastroenterol. 104, 1831–1843 (2009).

    Google Scholar 

  5. Lee, J. H. The effects of music on pain: a meta-analysis. J. Music Ther. 53, 430–477 (2016).

    Google Scholar 

  6. Cepeda, M. S., Carr, D. B., Lau, J. & Alvarez, H. Music for pain relief. Cochrane Database Syst. Rev. CD004843 (2006).

  7. McGill, M. et al. Neural signatures of auditory hypersensitivity following acoustic trauma. Elife 11, e80015 (2022).

  8. Ciminelli, P. et al. Tinnitus: the sound of stress? Clin. Pract. Epidemiol. Ment. Health 14, 264–269 (2018).

    Google Scholar 

  9. Patil, J. D., Alrashid, M. A., Eltabbakh, A. & Fredericks, S. The association between stress, emotional states, and tinnitus: a mini-review. Front Aging Neurosci. 15, 1131979 (2023).

    Google Scholar 

  10. Manohar, S., Chen, G. D., Li, L., Liu, X. & Salvi, R. Chronic stress induced loudness hyperacusis, sound avoidance and auditory cortex hyperactivity. Hear Res 431, 108726 (2023).

    Google Scholar 

  11. Moloney, R. D. et al. Stress and the microbiota-gut-brain axis in visceral pain: relevance to irritable bowel syndrome. CNS Neurosci. Ther. 22, 102–117 (2016).

    Google Scholar 

  12. Ausland, J. H. et al. Tinnitus and associations with chronic pain: the population-based Tromso Study (2015-2016). PLoS One 16, e0247880 (2021).

    Google Scholar 

  13. De Meulemeester, K. et al. Comparing tinnitus, pain, psychosocial and cognitive factors between patients with tinnitus and pain: a systematic review. J. Psychosom. Res. 168, 111201 (2023).

    Google Scholar 

  14. Andresen, V. et al. Cerebral processing of auditory stimuli in patients with irritable bowel syndrome. World J. Gastroenterol. 12, 1723–1729 (2006).

    Google Scholar 

  15. Blomhoff, S., Jacobsen, M. B., Spetalen, S., Dahm, A. & Malt, U. F. Perceptual hyperreactivity to auditory stimuli in patients with irritable bowel syndrome. Scand. J. Gastroenterol. 35, 583–589 (2000).

    Google Scholar 

  16. Paulin, J., Andersson, L. & Nordin, S. Characteristics of hyperacusis in the general population. Noise Health 18, 178–184 (2016).

    Google Scholar 

  17. Khan, A. R., Geiger, L., Wiborg, O. & Czeh, B. Stress-induced morphological, cellular and molecular changes in the brain-lessons learned from the chronic mild stress model of depression. Cells 9, 1026 (2020).

  18. Meredith, M. A. & Allman, B. L. Single-unit analysis of somatosensory processing in the core auditory cortex of hearing ferrets. Eur. J. Neurosci. 41, 686–698 (2015).

    Google Scholar 

  19. Zhou, W. et al. Sound induces analgesia through corticothalamic circuits. Science 377, 198–204 (2022).

    Google Scholar 

  20. Xu, Q. Y. et al. Identification of a glutamatergic claustrum-anterior cingulate cortex circuit for visceral pain processing. J. Neurosci. 42, 8154–8168 (2022).

    Google Scholar 

  21. Zhang, F. C. et al. Paraventricular thalamus-insular cortex circuit mediates colorectal visceral pain induced by neonatal colonic inflammation in mice. CNS Neurosci. Ther. 30, e14534 (2024).

    Google Scholar 

  22. Li, D. et al. The paraventricular thalamus mediates visceral pain and anxiety-like behaviors via two distinct pathways. Neuron 113, 2310–2324 (2025).

  23. Blackwell, J. M. & Geffen, M. N. Progress and challenges for understanding the function of cortical microcircuits in auditory processing. Nat. Commun. 8, 2165 (2017).

    Google Scholar 

  24. Li, H. Y. et al. A thalamic-primary auditory cortex circuit mediates resilience to stress. Cell 186, 1352–1368 e18 (2023).

    Google Scholar 

  25. Zhou, Q., Wang, Y., Yi, L., Tan, Z. & Jiang, Y. Multisensory interplay within human auditory cortex: new evidence from intraoperative optical imaging of intrinsic signal. World Neurosurg. 98, 251–257 (2017).

    Google Scholar 

  26. Seybold, B. A. et al. Chronic reduction in inhibition reduces receptive field size in mouse auditory cortex. Proc. Natl. Acad. Sci. USA 109, 13829–13834 (2012).

    Google Scholar 

  27. Ibrahim, B. A. & Llano, D. A. Aging and central auditory disinhibition: is it a reflection of homeostatic downregulation or metabolic vulnerability? Brain Sci. 9, 351 (2019).

  28. Perez, M. A. et al. Repeated restraint stress impairs auditory attention and GABAergic synaptic efficacy in the rat auditory cortex. Neuroscience 246, 94–107 (2013).

    Google Scholar 

  29. Ma, L., Li, W., Li, S., Wang, X. & Qin, L. Effect of chronic restraint stress on inhibitory gating in the auditory cortex of rats. Stress 20, 312–319 (2017).

    Google Scholar 

  30. Ayala-Rodriguez, J. D. & Garcia-Colunga, J. Maternal separation modifies spontaneous synaptic activity in the infralimbic cortex of stress-resilient male rats. PLoS One 18, e0294151 (2023).

    Google Scholar 

  31. Zhong, W., Zheng, W. & Ji, X. Spatial distribution of inhibitory innervations of excitatory pyramidal cells by major interneuron subtypes in the auditory cortex. Bioengineering (Basel), 10, 547 (2023).

  32. Ghimire, M. et al. Increased pyramidal and VIP neuronal excitability in rat primary auditory cortex directly correlates with tinnitus behaviour. J. Physiol. 601, 2493–2511 (2023).

    Google Scholar 

  33. Musacchia, G. & Schroeder, C. E. Neuronal mechanisms, response dynamics and perceptual functions of multisensory interactions in auditory cortex. Hear Res 258, 72–79 (2009).

    Google Scholar 

  34. Fillinger, C., Yalcin, I., Barrot, M. & Veinante, P. Afferents to anterior cingulate areas 24a and 24b and midcingulate areas 24a’ and 24b’ in the mouse. Brain Struct. Funct. 222, 1509–1532 (2017).

    Google Scholar 

  35. Urrutia-Pinones, J., Morales-Moraga, C., Sanguinetti-Gonzalez, N., Escobar, A. P. & Chiu, C. Q. Long-range GABAergic projections of cortical origin in brain function. Front Syst. Neurosci. 16, 841869 (2022).

    Google Scholar 

  36. Tamamaki, N. & Tomioka, R. Long-range GABAergic connections distributed throughout the neocortex and their possible function. Front. Neurosci. 4, 2010 (2010).

    Google Scholar 

  37. Tomioka, R. et al. Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex. Eur. J. Neurosci. 21, 1587–1600 (2005).

    Google Scholar 

  38. Bertero, A., Feyen, P. L. C., Zurita, H. & Apicella, A. J. A non-canonical cortico-amygdala inhibitory loop. J. Neurosci. 39, 8424–8438 (2019).

    Google Scholar 

  39. Bertero, A., Zurita, H., Normandin, M. & Apicella, A. J. Auditory long-range parvalbumin cortico-striatal neurons. Front Neural Circuits 14, 45 (2020).

    Google Scholar 

  40. Rock, C., Zurita, H., Wilson, C., & Apicella, A. J. An inhibitory corticostriatal pathway. Elife 5, e15890 (2016).

  41. Lee, J. Y. et al. Role of anterior cingulate cortex inputs to periaqueductal gray for pain avoidance. Curr. Biol. 32, 2834–2847 e5 (2022).

    Google Scholar 

  42. Antioch, I. et al. Favorite music mediates pain-related responses in the anterior cingulate cortex and skin pain thresholds. J. Pain. Res. 13, 2729–2737 (2020).

    Google Scholar 

  43. Sun, W. et al. The anterior cingulate cortex directly enhances auditory cortical responses in air-puffing-facilitated flight behavior. Cell Rep. 38, 110506 (2022).

    Google Scholar 

  44. Song, J. J., Vanneste, S. & De Ridder, D. Dysfunctional noise cancelling of the rostral anterior cingulate cortex in tinnitus patients. PLoS One 10, e0123538 (2015).

    Google Scholar 

  45. Lee, U. et al. Functional brain network mechanism of hypersensitivity in chronic pain. Sci. Rep. 8, 243 (2018).

    Google Scholar 

  46. Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

    Google Scholar 

  47. Green, S. A., Hernandez, L., Bookheimer, S. Y. & Dapretto, M. Salience network connectivity in autism is related to brain and behavioral markers of sensory overresponsivity. J. Am. Acad. Child Adolesc. Psychiatry 55, 618–626.e1 (2016).

    Google Scholar 

  48. Reynolds, R. P., Kinard, W. L., Degraff, J. J., Leverage, N. & Norton, J. N. Noise in a laboratory animal facility from the human and mouse perspectives. J. Am. Assoc. Lab Anim. Sci. 49, 592–597 (2010).

    Google Scholar 

  49. Nakamura, T., Tanida, M., Niijima, A. & Nagai, K. Effect of auditory stimulation on parasympathetic nerve activity in urethane-anesthetized rats. Vivo 23, 415–419 (2009).

    Google Scholar 

  50. Flores-Gutiérrez, E., Cabrera-Muñoz, E. A., Vega-Rivera, N. M., Ortiz-López, L. & Ramírez-Rodríguez, G. B. Exposure to patterned auditory stimuli during acute stress prevents despair-like behavior in adult mice that were previously housed in an enriched environment in combination with auditory stimuli. Neural Plast. 2018, 8205245 (2018).

    Google Scholar 

  51. Chen, Q.-Y., Wan, J., Wang, M., Hong, S. & Zhuo, M. Sound-induced analgesia cannot always be observed in adult mice. Mol. Pain. 19, 17448069231197158 (2023).

    Google Scholar 

  52. Geissler, D. B., Schmidt, H. S. & Ehret, G. Knowledge about sounds-context-specific meaning differently activates cortical hemispheres, auditory cortical fields, and layers in house mice. Front Neurosci. 10, 98 (2016).

    Google Scholar 

  53. Howlin, C. & Rooney, B. Cognitive agency in music interventions: Increased perceived control of music predicts increased pain tolerance. Eur. J. Pain. 25, 1712–1722 (2021).

    Google Scholar 

  54. Salimpoor, V. N. et al. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219 (2013).

    Google Scholar 

  55. Yang, E. J., Lin, E. W. & Hensch, T. K. Critical period for acoustic preference in mice. Proc. Natl. Acad. Sci. USA 109, 17213–17220 (2012).

    Google Scholar 

  56. Lunde, S. J., Vuust, P., Garza-Villarreal, E. A. & Vase, L. Music-induced analgesia: how does music relieve pain? Pain 160, 989–993 (2019).

    Google Scholar 

  57. Nilsson, U. The anxiety- and pain-reducing effects of music interventions: a systematic review. AORN J. 87, 780–807 (2008).

    Google Scholar 

  58. Lu, G. et al. Effects of music therapy on anxiety: a meta-analysis of randomized controlled trials. Psychiatry Res. 304, 114137 (2021).

    Google Scholar 

  59. Fu, Q. et al. Music prevents stress-induced depression and anxiety-like behavior in mice. Transl. Psychiatry 13, 317 (2023).

    Google Scholar 

  60. Li, W. J. et al. Anxiolytic effect of music exposure on BDNFMet/Met transgenic mice. Brain Res. 1347, 71–79 (2010).

    Google Scholar 

  61. Kuhlmann, A. Y. R., de Rooij, A., Hunink, M. G. M., De Zeeuw, C. I. & Jeekel, J. Music affects rodents: a systematic review of experimental research. Front Behav. Neurosci. 12, 301 (2018).

    Google Scholar 

  62. Semyachkina-Glushkovskaya, O. et al. Phenomenon of music-induced opening of the blood-brain barrier in healthy mice. Proc. Biol. Sci. 2020 287, 20202337 (1941).

    Google Scholar 

  63. Morton, A. J., Hickey, M. A. & Dean, L. C. Methamphetamine toxicity in mice is potentiated by exposure to loud music. NeuroReport 12, 3277–3281 (2001).

    Google Scholar 

  64. Chikahisa, S., Sano, A., Kitaoka, K., Miyamoto, K. & Sei, H. Anxiolytic effect of music depends on ovarian steroid in female mice. Behav. Brain Res. 179, 50–59 (2007).

    Google Scholar 

  65. Li, Y. C. et al. Distinct circuits and molecular targets of the paraventricular hypothalamus decode visceral and somatic pain. Neuron 112, 3734–3749 (2024).

  66. Zhang, F. C. et al. A vagus nerve dominant tetra-synaptic ascending pathway for gastric pain processing. Nat. Commun. 15, 9824 (2024).

    Google Scholar 

  67. Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994).

    Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (grant numbers: 82530041 and 32230041 to G.Y.X., 82571396 to Y.Y.), the National Key Research and Development Programme of China (2024YFC3505200 and 2024YFC3505203 to G.Y.X.), the Chinese Red Cross Foundation National Brain Nutrition Research Fund (to G.Y.X.) and the Natural Science Foundation of Jiangsu Province (BK20255001 to G.Y.X.). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Author notes
  1. These authors contributed equally: Yang Yu, Wen-Qiong Kuang.

Authors and Affiliations

  1. Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China

    Yang Yu & Guang-Yin Xu

  2. Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China

    Yang Yu, Wen-Qiong Kuang, Yu-Hang He, Qian-Qian Chen, Yong-Chang Li, Fu-Chao Zhang & Guang-Yin Xu

  3. Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China

    Hua-Dong Ni

  4. Biomedical Basic Research Center of Jiangsu Province, Suzhou, China

    Guang-Yin Xu

Authors
  1. Yang Yu
    View author publications

    Search author on:PubMed Google Scholar

  2. Wen-Qiong Kuang
    View author publications

    Search author on:PubMed Google Scholar

  3. Yu-Hang He
    View author publications

    Search author on:PubMed Google Scholar

  4. Qian-Qian Chen
    View author publications

    Search author on:PubMed Google Scholar

  5. Yong-Chang Li
    View author publications

    Search author on:PubMed Google Scholar

  6. Fu-Chao Zhang
    View author publications

    Search author on:PubMed Google Scholar

  7. Hua-Dong Ni
    View author publications

    Search author on:PubMed Google Scholar

  8. Guang-Yin Xu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.Y., W.Q.K. and Y.H.H. acquired and analysed the data, prepared the figures and manuscript. Q.Q.C., Y.C.L. and F.C.Z. interpreted the data. HDN revised the manuscript. G.Y.X. designed the experiments, supervised the experiments and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hua-Dong Ni or Guang-Yin Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Tao Chen, Xi Chen and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Kuang, WQ., He, YH. et al. A primary auditory cortex-anterior cingulate cortex circuit underlying cross-modal visceral pain modulation. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69135-3

Download citation

  • Received: 26 June 2025

  • Accepted: 26 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69135-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing