Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Can ferric-oxyl excited states explain elongated iron-oxygen bonds in heme peroxidase catalytic intermediates?
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Can ferric-oxyl excited states explain elongated iron-oxygen bonds in heme peroxidase catalytic intermediates?

  • Lewis J. Williams1,2,3,
  • Jos J.A.G. Kamps  ORCID: orcid.org/0000-0001-8646-17962,3,
  • Adrian M. V. Brânzanic  ORCID: orcid.org/0000-0002-4166-01314,5,
  • Maria Lehene  ORCID: orcid.org/0000-0003-0768-23424,
  • Kristoffer J. M. Lundgren  ORCID: orcid.org/0009-0002-2611-78836,
  • Ulf Ryde  ORCID: orcid.org/0000-0001-7653-84896,
  • Kuntal Chatterjee7,
  • Margaret D. Doyle7,
  • Philipp S. Simon  ORCID: orcid.org/0000-0002-2859-44757,
  • Hiroki Makita  ORCID: orcid.org/0000-0002-4968-914X7,
  • Amy J. Thompson  ORCID: orcid.org/0000-0003-2174-27512,
  • Aaron S. Brewster  ORCID: orcid.org/0000-0002-0908-78227,
  • Tiankun Zhou2,
  • Marina Lučić1,
  • Michael T. Wilson1,
  • Pierre Aller  ORCID: orcid.org/0000-0002-1793-70302,
  • Juan Sanchez-Weatherby2,
  • Leland Gee  ORCID: orcid.org/0000-0002-5817-39978,
  • Sebastian Dehe  ORCID: orcid.org/0000-0002-9206-91068,
  • Sandra Mous  ORCID: orcid.org/0000-0002-3532-59788,
  • Junko Yano  ORCID: orcid.org/0000-0001-6308-90717,
  • Vittal K. Yachandra  ORCID: orcid.org/0000-0002-3983-78587,
  • Michael A. Hough1,2,3,
  • Allen M. Orville  ORCID: orcid.org/0000-0002-7803-17772,3,
  • Jan F. Kern  ORCID: orcid.org/0000-0002-7272-16037,
  • Radu L. Silaghi-Dumitrescu  ORCID: orcid.org/0000-0003-3038-77474 &
  • …
  • Jonathan A. R. Worrall  ORCID: orcid.org/0000-0002-1863-834X1 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Biophysics
  • Computational biology and bioinformatics
  • Metalloproteins
  • Structural biology

Abstract

The use of X-ray structures to determine and interpret the ferryl iron-oxygen bond order in molecular oxygen-activating heme enzymes has, in the past, been controversial. This has mainly stemmed from the susceptibility of ferryl species to X-ray-induced electronic state changes. In this work we establishe using time-resolved serial femtosecond X-ray crystallography (tr-SFX) on a dye-decolourising peroxidase that the ferryl intermediate species (Compounds I and II) captured following in situ mixing of microcrystals with H2O2 have single, rather than the double bond character expected. X-ray emission validated tr-SFX data with quantum refinement, time-dependent-DFT calculations and QM/MM geometry optimizations together support the concept that the single iron-oxygen bond character is not an indication of ferryl reduction or a protonated form (FeIV-OH) but is instead attributed to the existence of accessible excited states possessing ferric-oxyl (FeIII–O•–) character. Such states offer insight into the nature of ferryl heme.

Data availability

The atomic coordinates and structure factors generated in this study for the DtpAa Y389F variant time series have been deposited in the Protein Data Bank (PDB) under the accession codes; 9S5O t = 0 [https://doi.org/10.2210/pdb9S5O/pdb]; 9S5P t = 0.5 s [https://doi.org/10.2210/pdb9S5P/pdb]; 9S5Q t = 1 s [https://doi.org/10.2210/pdb9S5Q/pdb]; 9S5R t = 5 s [https://doi.org/10.2210/pdb9S5R/pdb]; 9S5S t > 20 min [https://doi.org/10.2210/pdb9S5S/pdb]. The source data underlying Figs. 1, 4, 5, 7A, B, and Supplementary Figs. 1, 5, and 8 are provided as a Source Data file. Source data are provided with this paper.

References

  1. Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 3919–3962 (2014).

    Google Scholar 

  2. Moody, P. C. E. & Raven, E. L. The nature and reactivity of ferryl heme in compounds I and II. Acc. Chem. Res. 51, 427–435 (2018).

    Google Scholar 

  3. Yosca, T. H. et al. Iron(IV)hydroxide pK(a) and the role of thiolate ligation in C–H bond activation by cytochrome P450. Science 342, 825–829 (2013).

    Google Scholar 

  4. Yosca, T. H. et al. Setting an upper limit on the myoglobin iron(IV)hydroxide pK(a): insight into axial ligand tuning in heme protein catalysis. J. Am. Chem. Soc. 136, 9124–9131 (2014).

    Google Scholar 

  5. Berglund, G. I. et al. The catalytic pathway of horseradish peroxidase at high resolution. Nature 417, 463–468 (2002).

    Google Scholar 

  6. Gumiero, A., Metcalfe, C. L., Pearson, A. R., Raven, E. L. & Moody, P. C. Nature of the ferryl heme in compounds I and II. J. Biol. Chem. 286, 1260–1268 (2011).

    Google Scholar 

  7. Casadei, C. M. et al. Heme enzymes. Neutron cryo-crystallography captures the protonation state of ferryl heme in a peroxidase. Science 345, 193–197 (2014).

    Google Scholar 

  8. Kwon, H. et al. Direct visualization of a Fe(IV)–OH intermediate in a heme enzyme. Nat. Commun. 7, 13445 (2016).

    Google Scholar 

  9. Chreifi, G. et al. Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer. Proc. Natl. Acad. Sci. USA 113, 1226–1231 (2016).

    Google Scholar 

  10. Kwon, H. et al. XFEL crystal structures of peroxidase compound II. Angew. Chem. Int Ed. Engl. 60, 14578–14585 (2021).

    Google Scholar 

  11. Kern, J. et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–495 (2013).

    Google Scholar 

  12. Bergmann, U. et al. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. Nat. Rev. Phys. 3, 264–282 (2021).

    Google Scholar 

  13. Makita, H., Zhang, M., Yano, J. & Kern, J. Room temperature crystallography and X-ray spectroscopy of metalloenzymes. Methods Enzymol. 688, 307–348 (2023).

    Google Scholar 

  14. Lučić, M. et al. Aspartate or arginine? Validated redox state X-ray structures elucidate mechanistic subtleties of Fe(IV)=O formation in bacterial dye-decolorizing peroxidases. J. Biol. Inorg. Chem. 26, 743–761 (2021).

    Google Scholar 

  15. Lucic, M. et al. A subtle structural change in the distal haem pocket has a remarkable effect on tuning hydrogen peroxide reactivity in dye decolourising peroxidases from Streptomyces lividans. Dalton Trans. 49, 1620–1636 (2020).

    Google Scholar 

  16. Lučić, M. et al. New insights into controlling radical migration pathways in heme enzymes gained from the study of a dye-decolorising peroxidase. Chem. Sci. 14, 12518–12534 (2023).

    Google Scholar 

  17. Fuller, F. D. et al. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat. Methods 14, 443–449 (2017).

    Google Scholar 

  18. Butryn, A. et al. An on-demand, drop-on-drop method for studying enzyme catalysis by serial crystallography. Nat. Commun. 12, 4461 (2021).

    Google Scholar 

  19. Nguyen, R. C. et al. In situ structural observation of a substrate- and peroxide-bound high-spin ferric-hydroperoxo intermediate in the P450 enzyme CYP121. J. Am. Chem. Soc. 145, 25120–25133 (2023).

    Google Scholar 

  20. Chaplin, A. K. et al. An aromatic dyad motif in dye decolourising peroxidases has implications for free radical formation and catalysis. Chemistry 25, 6141–6153 (2019).

    Google Scholar 

  21. Lučić, M. et al. Serial femtosecond zero dose crystallography captures a water-free distal heme site in a dye-decolorising peroxidase to reveal a catalytic role for an arginine in Fe(IV) =O formation. Angew. Chem. Int. Ed. Engl. 59, 21656–21662 (2020).

    Google Scholar 

  22. Lučić, M. et al. The oligomeric states of dye-decolorizing peroxidases from Streptomyces lividans and their implications for mechanism of substrate oxidation. Protein Sci. 33, e5073 (2024).

    Google Scholar 

  23. Pletzer-Zelgert, J. et al. LifeSoaks: a tool for analyzing solvent channels in protein crystals and obstacles for soaking experiments. Acta Crystallogr. D. 79, 837–856 (2023).

    Google Scholar 

  24. Diedrich, K., Graef, J., Schöning-Stierand, K. & Rarey, M. GeoMine: interactive pattern mining of protein-ligand interfaces in the Protein Data Bank. Bioinformatics 37, 424–425 (2021).

    Google Scholar 

  25. Schöning-Stierand, K. et al. ProteinsPlus: a comprehensive collection of web-based molecular modeling tools. Nucleic Acids Res. 50, W611–W615 (2022).

    Google Scholar 

  26. Kawai, J., Suzuki, C., Adachi, H., Konishi, T. & Gohshi, Y. Charge-transfer effect on the linewidth of Fe K alpha x-ray fluorescence spectra. Phys. Rev. B Condens Matter 50, 11347–11354 (1994).

    Google Scholar 

  27. Lafuerza, S., Carlantuono, A., Retegan, M. & Glatzel, P. Chemical sensitivity of Kβ and Kα X-ray emission from a systematic investigation of iron compounds. Inorg. Chem. 59, 12518–12535 (2020).

    Google Scholar 

  28. Rabe. P. et al. X-ray free-electron laser studies reveal correlated motion during isopenicillin N synthase catalysis. Sci. Adv. 7, eabh0250 (2021).

  29. Lundgren, K. J. M., Caldararu, O., Oksanen, E. & Ryde, U. Quantum refinement in real and reciprocal space using the Phenix and ORCA software. IUCrJ 11, 921–937 (2024).

    Google Scholar 

  30. Orville, A. M. Recent results in time resolved serial femtosecond crystallography at XFELs. Curr. Opin. Struct. Biol. 65, 193–208 (2020).

    Google Scholar 

  31. Beitlich, T., Kühnel, K., Schulze-Briese, C., Shoeman, R. L. & Schlichting, I. Cryoradiolytic reduction of crystalline heme proteins: analysis by UV-Vis spectroscopy and X-ray crystallography. J. Synchrotron Radiat. 14, 11–23 (2007).

    Google Scholar 

  32. Meharenna, Y. T., Doukov, T., Li, H., Soltis, S. M. & Poulos, T. L. Crystallographic and single-crystal spectral analysis of the peroxidase ferryl intermediate. Biochemistry 49, 2984–2986 (2010).

    Google Scholar 

  33. Hersleth, H. P. & Andersson, K. K. How different oxidation states of crystalline myoglobin are influenced by X-rays. Biochim. Biophys. Acta 1814, 785–796 (2011).

    Google Scholar 

  34. Fransson, T. et al. Effects of x-ray free-electron laser pulse intensity on the Mn K β (1,3) x-ray emission spectrum in photosystem II-A case study for metalloprotein crystals and solutions. Struct. Dyn. 8, 064302 (2021).

    Google Scholar 

  35. Williams, L. J. et al. Damage before destruction? X-ray-induced changes in single-pulse serial femtosecond crystallography. IUCrJ 12, 358–371 (2025).

    Google Scholar 

  36. Krest, C. M. et al. Reactive intermediates in cytochrome p450 catalysis. J. Biol. Chem. 288, 17074–17081 (2013).

    Google Scholar 

  37. Behan, R. K. & Green, M. T. On the status of ferryl protonation. J. Inorg. Biochem. 100, 448–459 (2006).

    Google Scholar 

  38. Ledray, A. P., Krest, C. M., Yosca, T. H., Mittra, K. & Green, M. T. Ascorbate peroxidase compound II is an Iron(IV) Oxo species. J. Am. Chem. Soc. 142, 20419–20425 (2020).

    Google Scholar 

  39. Ansari, M., Bhattacharjee, S. & Pantazis, D. A. Correlating structure with spectroscopy in ascorbate peroxidase compound II. J. Am. Chem. Soc. 146, 9640–9656 (2024).

    Google Scholar 

  40. Silaghi-Dumitrescu, R. Redox Activation of Small Molecules at Biological Metal Centers. In: Applications of Density Functional Theory to Biological and Bioinorganic Chemistry (eds Putz MV, Mingos DMP). Springer Berlin Heidelberg (2013).

  41. Ye, S. & Neese, F. Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C–H bond activation transition state. Proc. Natl. Acad. Sci. USA 108, 1228–1233 (2011).

    Google Scholar 

  42. Srnec, M. et al. Electronic structure of the ferryl intermediate in the α-ketoglutarate dependent non-heme iron halogenase SyrB2: contributions to H atom abstraction reactivity. J. Am. Chem. Soc. 138, 5110–5122 (2016).

    Google Scholar 

  43. Wilson, S. A. et al. X-ray absorption spectroscopic investigation of the electronic structure differences in solution and crystalline oxyhemoglobin. Proc. Natl. Acad. Sci. USA 110, 16333–16338 (2013).

    Google Scholar 

  44. Petrus, M.L. et al. The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in Streptomyces. Open Biol. 6, 150149 (2016).

  45. Alonso-Mori, R. et al. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proc. Natl. Acad. Sci. USA 109, 19103–19107 (2012).

    Google Scholar 

  46. Alonso-Mori, R. et al. A multi-crystal wavelength dispersive x-ray spectrometer. Rev. Sci. Instrum. 83, 073114 (2012).

    Google Scholar 

  47. Brewster, A. S. et al. cctbx.xfel: a suite for processing serial crystallographic data. Preprint at bioRxiv https://doi.org/10.1101/2025.05.04.652045 (2025).

  48. Brewster, A. S. et al. Improving signal strength in serial crystallography with DIALS geometry refinement. Acta Crystallogr. D. 74, 877–894 (2018).

    Google Scholar 

  49. Fransson, T. et al. X-ray emission spectroscopy as an in situ diagnostic tool for X-ray crystallography of metalloproteins using an X-ray free-electron laser. Biochemistry 57, 4629–4637 (2018).

    Google Scholar 

  50. Ebrahim, A. et al. Dose-resolved serial synchrotron and XFEL structures of radiation-sensitive metalloproteins. IUCrJ 6, 543–551 (2019).

    Google Scholar 

  51. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D. 75, 861–877 (2019).

    Google Scholar 

  52. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. 66, 486–501 (2010).

    Google Scholar 

  53. Cruickshank, D. Remarks about protein structure precision. Acta Crystallogr D. 55, 583–601 (1999).

    Google Scholar 

  54. Gurusaran, M., Shankar, M., Nagarajan, R., Helliwell, J. R. & Sekar, K. Do we see what we should see? Describing non-covalent interactions in protein structures including precision. IUCrJ 1, 74–81 (2014).

    Google Scholar 

  55. Kumar, K. S. D. et al. Online_DPI: a web server to calculate the diffraction precision index for a protein structure. J. Appl. Crystallogr. 48, 939–942 (2015).

    Google Scholar 

  56. Helliwell, J. R. Error estimates in atom coordinates and B factors in macromolecular crystallography. Curr. Res. Struct. Biol. 6, 100111 (2023).

    Google Scholar 

  57. Frisch, M.J. et al. Gaussian 16 Rev. C.01 (Gaussian, Inc., Wallingford, 2016).

  58. Lehene, M. et al. Adduct of aquacobalamin with hydrogen peroxide. Inorg. Chem. 60, 12681–12684 (2021).

    Google Scholar 

  59. Lehene, M., Brânzanic, A. M. V. & Silaghi-Dumitrescu, R. The adducts of cyano- and aquacobalamin with hypochlorite. J. Biol. Inorg. Chem. 28, 583–589 (2023).

    Google Scholar 

  60. Lehene, M. et al. A complex of cobalamin with an organic peroxide. N. J. Chem. 47, 18178–18185 (2023).

    Google Scholar 

  61. Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Google Scholar 

  62. Jakalian, A., Jack, D. B. & Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 1623–1641 (2002).

    Google Scholar 

  63. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Google Scholar 

  64. Case, D. A. et al. AmberTools. J. Chem. Inf. Model 63, 6183–6191 (2023).

    Google Scholar 

  65. Li, P. & Merz, K. M. Jr. MCPB.py: a python based metal center parameter builder. J. Chem. Inf. Model 56, 599–604 (2016).

    Google Scholar 

  66. Allen, A. E. A., Payne, M. C. & Cole, D. J. Harmonic force constants for molecular mechanics force fields via hessian matrix projection. J. Chem. Theory Comput. 14, 274–281 (2018).

    Google Scholar 

  67. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Google Scholar 

  68. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Google Scholar 

  69. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Google Scholar 

  70. Rassolov, V. A., Pople, J. A., Ratner, M. A. & Windus, T. L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998).

    Google Scholar 

  71. Neese, F. The ORCA program system. WIREs Comput Mol. Sci. 2, 73–78 (2012).

    Google Scholar 

  72. Neese, F. Software update: The ORCA program system—version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022).

    Google Scholar 

  73. Neese, F. & Olbrich, G. Efficient use of the resolution of the identity approximation in time-dependent density functional calculations with hybrid density functionals. Chem. Phys. Lett. 362, 170–178 (2002).

    Google Scholar 

  74. Neese, F. An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J. Comput. Chem. 24, 1740–1747 (2003).

    Google Scholar 

  75. Perdew, J. P. & Wang, Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B 46, 12947–12954 (1992).

    Google Scholar 

  76. Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).

    Google Scholar 

  77. Eichkorn, K., Treutler, O., Öhm, H., Häser, M. & Ahlrichs, R. Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett. 240, 283–290 (1995).

    Google Scholar 

  78. Grimme, S. A simplified Tamm–Dancoff density functional approach for the electronic excitation spectra of very large molecules. J. Chem. Phys. 138, 244104 (2013).

    Google Scholar 

  79. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D. 68, 352–367 (2012).

    Google Scholar 

  80. Tickle, I. Statistical quality indicators for electron-density maps. Acta Crystallogr. D. 68, 454–467 (2012).

    Google Scholar 

  81. Caldeweyher, E., Bannwarth. C. & Grimme, S. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 147, 034112 (2017).

  82. Bergmann, J., Oksanen, E. & Ryde, U. Can the results of quantum refinement be improved with a continuum-solvation model?. Acta Crystallogr. B 77, 906–918 (2021).

    Google Scholar 

  83. Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D. 73, 148–157 (2017).

    Google Scholar 

Download references

Acknowledgements

Data were collected at the LCLS, SLAC National Accelerator Laboratory (proposal no. L10057), supported by the DOE Office of Science, OBES under contract no. DE-AC02-76SF00515. SFX data processing was performed in part at the National Energy Research Scientific Computing Center, supported by the DOE Office of Science, contract no. DEAC02-05CH11231. The Rayonix detector used at LCLS was supported by the NIH grant S10 OD023453. Data processing was supported by the US DIALS National Resource (R24GM154040). Experiments at the LCLS were supported by the NIH grant P41GM139687, and additional assistance and technical support from Dr Vandana Tiwari and Dr Humberto Sanchez is acknowledged. The ID29 beamline at the European Synchrotron Radiation Facility (ESRF) is acknowledged for early sample testing using a tape-drive delivery setup under BAG number MX2438. L.J.W. was supported by a joint studentship award (STU0436) from Diamond Light Source and the University of Essex. J.A.R.W. and M.A.H. acknowledge support from the BBSRC (BB/W001950/1). A.M.O. is supported by the Wellcome Trust (210734/Z/18/Z) and a Royal Society Wolfson Fellowship (RSWF\R2\182017). We acknowledge the XFEL hub at Diamond Light Source for travel assistance to LCLS to perform experiments. Support from the Romanian Ministry for Education and Research and the European Union—NextGenerationEU for the Romanian Government, under the National Recovery and Resilience Plan for Romania and the European Fund of Regional Development through the Competitiveness Operational Programme 2014-2020 (projects PNRR-III-C9-2023-I8-CF76, POC/398/1/1/124155, 390005/23.10.2024-INSPIRE-II, 235/2020-CLOUDUT) is gratefully acknowledged. U.R. acknowledges support of grants from the Swedish research council (projects 2020-06176 and 2022-04978). The computations were enabled by resources provided by LUNARC, the Centre for Scientific and Technical Computing at Lund University. Support from the U.S. Department of Energy, Office of Science (OS), Office of Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division, contract no. DE-AC02-05CH11231 (J.Y., V.K.Y., and J.F.K.) and by the National Institutes of Health (NIH) Grants GM149528 (V.K.Y.), GM110501 (J.Y.), GM126289 (J.F.K.), is acknowledged.

Author information

Authors and Affiliations

  1. School of Life Sciences, University of Essex, Colchester, UK

    Lewis J. Williams, Marina Lučić, Michael T. Wilson, Michael A. Hough & Jonathan A. R. Worrall

  2. Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK

    Lewis J. Williams, Jos J.A.G. Kamps, Amy J. Thompson, Tiankun Zhou, Pierre Aller, Juan Sanchez-Weatherby, Michael A. Hough & Allen M. Orville

  3. Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK

    Lewis J. Williams, Jos J.A.G. Kamps, Michael A. Hough & Allen M. Orville

  4. Faculty of Chemistry and Chemical Engineering and INSPIRE Platform InfoBioNano4Health & Biomedical Imaging, Babeș-Bolyai University, Cluj-Napoca, Romania

    Adrian M. V. Brânzanic, Maria Lehene & Radu L. Silaghi-Dumitrescu

  5. Raluca Ripan” Institute for Research in Chemistry, Babeș-Bolyai University, Fântânele, Romania

    Adrian M. V. Brânzanic

  6. Division of Computational Chemistry, Lund University, Chemical Centre, Sweden

    Kristoffer J. M. Lundgren & Ulf Ryde

  7. Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    Kuntal Chatterjee, Margaret D. Doyle, Philipp S. Simon, Hiroki Makita, Aaron S. Brewster, Junko Yano, Vittal K. Yachandra & Jan F. Kern

  8. Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

    Leland Gee, Sebastian Dehe & Sandra Mous

Authors
  1. Lewis J. Williams
    View author publications

    Search author on:PubMed Google Scholar

  2. Jos J.A.G. Kamps
    View author publications

    Search author on:PubMed Google Scholar

  3. Adrian M. V. Brânzanic
    View author publications

    Search author on:PubMed Google Scholar

  4. Maria Lehene
    View author publications

    Search author on:PubMed Google Scholar

  5. Kristoffer J. M. Lundgren
    View author publications

    Search author on:PubMed Google Scholar

  6. Ulf Ryde
    View author publications

    Search author on:PubMed Google Scholar

  7. Kuntal Chatterjee
    View author publications

    Search author on:PubMed Google Scholar

  8. Margaret D. Doyle
    View author publications

    Search author on:PubMed Google Scholar

  9. Philipp S. Simon
    View author publications

    Search author on:PubMed Google Scholar

  10. Hiroki Makita
    View author publications

    Search author on:PubMed Google Scholar

  11. Amy J. Thompson
    View author publications

    Search author on:PubMed Google Scholar

  12. Aaron S. Brewster
    View author publications

    Search author on:PubMed Google Scholar

  13. Tiankun Zhou
    View author publications

    Search author on:PubMed Google Scholar

  14. Marina Lučić
    View author publications

    Search author on:PubMed Google Scholar

  15. Michael T. Wilson
    View author publications

    Search author on:PubMed Google Scholar

  16. Pierre Aller
    View author publications

    Search author on:PubMed Google Scholar

  17. Juan Sanchez-Weatherby
    View author publications

    Search author on:PubMed Google Scholar

  18. Leland Gee
    View author publications

    Search author on:PubMed Google Scholar

  19. Sebastian Dehe
    View author publications

    Search author on:PubMed Google Scholar

  20. Sandra Mous
    View author publications

    Search author on:PubMed Google Scholar

  21. Junko Yano
    View author publications

    Search author on:PubMed Google Scholar

  22. Vittal K. Yachandra
    View author publications

    Search author on:PubMed Google Scholar

  23. Michael A. Hough
    View author publications

    Search author on:PubMed Google Scholar

  24. Allen M. Orville
    View author publications

    Search author on:PubMed Google Scholar

  25. Jan F. Kern
    View author publications

    Search author on:PubMed Google Scholar

  26. Radu L. Silaghi-Dumitrescu
    View author publications

    Search author on:PubMed Google Scholar

  27. Jonathan A. R. Worrall
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.J.W., M.A.H., R.L.S-D., J.A.R.W.: conceptualization. L.J.W., J.J.A.G.K., A.M.V.B., Maria L., K.J.M.L., K.C., M.A.D., P.S.S., H.M., Marina L., M.T.W., P.A., J.S.W., L.G., S.D., S.M., U.R., A.M.O., J.F.K., R.L.S.-D., and J.A.R.W.: investigation. A.J.T., A.S.B., T.Z., K.C., and M.A.D.: formal analysis. J.Y., V.K.Y., J.F.K., A.M.O., K.J.M.L., and U.R.: methodology. L.J.W., M.T.W., R.L.S-D., and J.A.R.W.: writing—original draft. J.F.K., U.R., M.A.H., K.C., L.J.W., M.T.W., R.L.S-D., and J.A.R.W.: writing—review and editing.

Corresponding authors

Correspondence to Michael A. Hough, Allen M. Orville, Jan F. Kern, Radu L. Silaghi-Dumitrescu or Jonathan A. R. Worrall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Peter Moody, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, L.J., Kamps, J.J., Brânzanic, A.M.V. et al. Can ferric-oxyl excited states explain elongated iron-oxygen bonds in heme peroxidase catalytic intermediates?. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69192-8

Download citation

  • Received: 08 August 2025

  • Accepted: 22 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69192-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing