Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Haplotype-resolved genome assembly and resequencing provide insights into the origin and breeding of modern rose

Abstract

Modern rose (Rosa hybrida) is a recently formed interspecific hybrid and has become one of the most important and widely cultivated ornamentals. Here we report the haplotype-resolved chromosome-scale genome assembly of the tetraploid R. hybrida ‘Samantha’ (‘JACmantha’) and a genome variation map of 233 Rosa accessions involving various wild species, and old and modern cultivars. Homologous chromosomes of ‘Samantha’ exhibit frequent homoeologous exchanges. Population genomic and genomic composition analyses reveal the contributions of wild Rosa species to modern roses and highlight that R. odorata and its derived cultivars are important contributors to modern roses, much like R. chinensis ‘Old Blush’. Furthermore, selective sweeps during modern rose breeding associated with major agronomic traits, including continuous and recurrent flowering, double flower, flower senescence and disease resistance, are identified. This study provides insights into the genetic basis of modern rose origin and breeding history, and offers unprecedented genomic resources for rose improvement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genomic landscape of R. hybrida ‘Samantha’.
Fig. 2: Population structure of 233 accessions within the genus Rosa.
Fig. 3: Genetic compositions of the ‘Samantha’ chromosomes.
Fig. 4: Genome-wide distribution of selective sweeps in R. hybrida.

Similar content being viewed by others

Data availability

Raw reads generated in this study have been deposited in the NCBI BioProject database under accession numbers PRJNA1108167 and PRJNA704782. The sequences and annotations of the ‘Samantha’ genome assembly are available on figshare at https://doi.org/10.6084/m9.figshare.22774097 (ref. 96). The following databases were used: BUSCO eudicot database (https://busco-data.ezlab.org/v5/data/lineages/eudicots_odb10.2024-01-08.tar.gz), GenBank common eukaryotic contaminant database (https://ftp.ncbi.nlm.nih.gov/pub/kitts/contam_in_euks.fa.gz), GenBank nt database (https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz), InterPro database (https://www.ebi.ac.uk/interpro/download/InterPro/), UniProt (Swiss-Prot/TrEMBL) databases (https://www.uniprot.org/downloads), Repbase database (https://www.girinst.org/downloads/), Dfam database (https://www.dfam.org/releases/Dfam_3.8/families/), Fragaria ananassa ‘Yanli’ genome (https://www.rosaceae.org/Analysis/14723107), Malus domestica ‘Fuji’ genome (https://www.rosaceae.org/Analysis/15540493), Rubus idaeus ‘Joan J’ genome (https://www.rosaceae.org/Analysis/14031373), Rosa rugosa genome (https://www.rosaceae.org/Analysis/11775539), Rosa chinensis ‘Old Blush’ genome (https://www.rosaceae.org/analysis/282), Rosa wichuraiana ‘Basye’s Thornless’ genome (https://www.rosaceae.org/Analysis/13087667) and Rosa chinensis ‘Chilong Hanzhu’ genome (https://www.ncbi.nlm.nih.gov/bioproject/932466; https://doi.org/10.6084/m9.figshare.26888665.v1).

References

  1. Usman, M., Ashfaq, M., Taj, S. & Abid, M. An economic analysis of cut-rose flower in Punjab, Pakistan. J. Anim. Plant Sci. 24, 651–655 (2014).

    Google Scholar 

  2. Roberts, A. V., Debener, T. & Gudin, S. Encyclopedia of Rose Science (Academic Press, 2003).

  3. Yokoya, K., Roberts, A., Mottley, J., Lewis, R. & Brandham, P. Nuclear DNA amounts in roses. Ann. Bot. 85, 557–561 (2000).

    CAS  Google Scholar 

  4. Wylie, A. P. The history of garden roses. J. R. Hortic. Soc. 79, 555–571 (1954).

    Google Scholar 

  5. de Vries, D. & Dubois, L. Rose breeding: past, present, prospects. Acta Hortic. 424, 241–248 (1996).

    Google Scholar 

  6. Bendahmane, M., Dubois, A., Raymond, O. & Bris, M. L. Genetics and genomics of flower initiation and development in roses. J. Exp. Bot. 64, 847–857 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hibrand Saint-Oyant, L. et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. Plants 4, 473–484 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Raymond, O. et al. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 50, 772–777 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Deshpande, A. S. et al. Identifying synergistic high-order 3D chromatin conformations from genome-scale nanopore concatemer sequencing. Nat. Biotechnol. 40, 1488–1499 (2022).

    CAS  PubMed  Google Scholar 

  10. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed  Google Scholar 

  11. Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. 46, e126 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Bourke, P. M. et al. Partial preferential chromosome pairing is genotype dependent in tetraploid rose. Plant J. 90, 330–343 (2017).

    CAS  PubMed  Google Scholar 

  13. Abou Saada, O., Tsouris, A., Eberlein, C., Friedrich, A. & Schacherer, J. nPhase: an accurate and contiguous phasing method for polyploids. Genome Biol. 22, 126 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liorzou, M. et al. Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background. J. Exp. Bot. 67, 4711–4725 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, X. et al. Haplotype-resolved genome assembly of the diploid Rosa chinensis provides insight into the mechanisms underlying key ornamental traits. Mol. Hortic. 4, 14 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, F. et al. A chromosome-level genome assembly of rugged rose (Rosa rugosa) provides insights into its evolution, ecology, and floral characteristics. Hortic. Res. 8, 141 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhong, M.-C. et al. Rose without prickle: genomic insights linked to moisture adaptation. Natl Sci. Rev. 8, nwab092 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Soufflet-Freslon, V. et al. Diversity and selection of the continuous-flowering gene, RoKSN, in rose. Hortic. Res. 8, 76 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Iwata, H. et al. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J. 69, 116–125 (2011).

    PubMed  Google Scholar 

  21. Luo, X. & He, Y. Experiencing winter for spring flowering: a molecular epigenetic perspective on vernalization. J. Integr. Plant Biol. 62, 104–117 (2020).

    CAS  PubMed  Google Scholar 

  22. Weingartner, M., Subert, C. & Sauer, N. LATE, a C2H2 zinc‐finger protein that acts as floral repressor. Plant J. 68, 681–692 (2011).

    CAS  PubMed  Google Scholar 

  23. Sharma, N. et al. NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis. Development 143, 682–690 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, M. et al. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet. 12, e1006263 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. Clark, S. E., Running, M. P. & Meyerowitz, E. M. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119, 397–418 (1993).

    CAS  PubMed  Google Scholar 

  26. DeYoung, B. J. et al. The CLAVATA1‐related BAM1, BAM2 and BAM3 receptor kinase‐like proteins are required for meristem function in Arabidopsis. Plant J. 45, 1–16 (2005).

    Google Scholar 

  27. Saddic, L. A. The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development 133, 1673–1682 (2006).

    CAS  PubMed  Google Scholar 

  28. François, L. et al. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses. Sci. Rep. 8, 12912 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Gattolin, S. et al. Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae. Plant J. 96, 358–371 (2018).

    CAS  PubMed  Google Scholar 

  30. Han, Y. et al. An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations. Front. Plant Sci. 9, 481 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Grotewold, E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57, 761–780 (2006).

    CAS  PubMed  Google Scholar 

  32. Milbrath, J., Hansen, E. & Hartman, H. Defoliation of rose plants with ethylene gas. Science 91, 100 (1940).

    CAS  PubMed  Google Scholar 

  33. Reid, M. S., Evans, R. Y., Dodge, L. L. & Mor, Y. Ethylene and silver thiosulfate influence opening of cut rose flowers. J. Am. Soc. Hortic. Sci. 114, 436–440 (1989).

    CAS  Google Scholar 

  34. Ma, N. et al. Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. J. Exp. Bot. 57, 2763–2773 (2006).

    CAS  PubMed  Google Scholar 

  35. Alonso, J. M. & Stepanova, A. N. The ethylene signaling pathway. Science 306, 1513–1515 (2004).

    CAS  PubMed  Google Scholar 

  36. Gong, Z. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111, 803–814 (2002).

    CAS  PubMed  Google Scholar 

  37. Harada, T. et al. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening. J. Exp. Bot. 62, 815–823 (2011).

    CAS  PubMed  Google Scholar 

  38. Cai, X. et al. Mutant identification and characterization of the laccase gene family in Arabidopsis. J. Exp. Bot. 57, 2563–2569 (2006).

    CAS  PubMed  Google Scholar 

  39. Zhao, Q. et al. LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell 25, 3976–3987 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, J. et al. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics 16, 217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, K. et al. Genome-wide association study of 12 agronomic traits in peach. Nat. Commun. 7, 13246 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Debener, T. & Byrne, D. H. Disease resistance breeding in rose: current status and potential of biotechnological tools. Plant Sci. 228, 107–117 (2014).

    CAS  PubMed  Google Scholar 

  43. Hackenberg, T. et al. Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis. Plant Cell 25, 4616–4626 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu, Y. et al. Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera). Plant Sci. 267, 20–31 (2018).

    CAS  PubMed  Google Scholar 

  45. Fang, P. et al. Analysis of allelic variants of RhMLO genes in rose and functional studies on susceptibility to powdery mildew related to clade V homologs. Theor. Appl. Genet. 134, 2495–2515 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Caplan, J., Padmanabhan, M. & Dinesh-Kumar, S. P. Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3, 126–135 (2008).

    CAS  PubMed  Google Scholar 

  47. Satterlee, J. W. et al. Convergent evolution of plant prickles by repeated gene co-option over deep time. Science 385, eado1663 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Scalliet, G. et al. Scent evolution in Chinese roses. Proc. Natl Acad. Sci. USA 105, 5927–5932 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S. & Thompson, W. F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1, 2320–2325 (2006).

    CAS  PubMed  Google Scholar 

  50. Li, Z. et al. Pore‐C simultaneously captures genome‐wide multi‐way chromatin interaction and associated DNA methylation status in Arabidopsis. Plant Biotechnol. J. 20, 1009–1011 (2022).

    PubMed  PubMed Central  Google Scholar 

  51. Belton, J.-M. et al. Hi–C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).

    CAS  PubMed  Google Scholar 

  52. Hare, E. E. & Johnston, J. S. Genome size determination using flow cytometry of propidium iodide-stained nuclei. Methods Mol. Biol. 772, 3–12 (2011).

    CAS  PubMed  Google Scholar 

  53. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Boratyn, G. M. et al. Domain enhanced lookup time accelerated BLAST. Biol. Direct 7, 12 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36, 311–316 (2019).

    PubMed Central  Google Scholar 

  56. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).

    CAS  PubMed  Google Scholar 

  59. Wingett, S. W. et al. HiCUP: pipeline for mapping and processing Hi-C data. F1000Research 4, 1310 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Goel, M., Sun, H., Jiao, W. B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Tang, H. et al. ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol. 16, 3 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mapleson, D., Garcia Accinelli, G., Kettleborough, G., Wright, J. & Clavijo, B. J. KAT: a K mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics 33, 574–576 (2017).

    CAS  PubMed  Google Scholar 

  64. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18 (2008).

    PubMed  PubMed Central  Google Scholar 

  66. Han, Y. & Wessler, S. R. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 38, e199 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. https://doi.org/10.1002/0471250953.bi0410s25 (2009).

    Article  Google Scholar 

  68. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).

    CAS  PubMed  Google Scholar 

  70. Hubley, R. et al. The Dfam database of repetitive DNA families. Nucleic Acids Res. 44, D81–D89 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).

    PubMed  PubMed Central  Google Scholar 

  72. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).

    PubMed  PubMed Central  Google Scholar 

  73. Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).

    CAS  PubMed  Google Scholar 

  74. Stanke, M., Tzvetkova, A. & Morgenstern, B. AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biol. 7, S11 (2006).

    PubMed Central  Google Scholar 

  75. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Haas, B. J. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou, J. et al. Comparison of red raspberry and wild strawberry fruits reveals mechanisms of fruit type specification. Plant Physiol. 193, 1016–1035 (2023).

    CAS  PubMed  Google Scholar 

  79. Daccord, N. et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 49, 1099–1106 (2017).

    CAS  PubMed  Google Scholar 

  80. Mao, J. et al. High-quality haplotype-resolved genome assembly of cultivated octoploid strawberry. Hortic. Res. 10, uhad002 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, H. Protein-to-genome alignment with miniprot. Bioinformatics 39, btad014 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cheng, C.-Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).

    CAS  PubMed  Google Scholar 

  83. Bairoch, A. The universal protein resource (UniProt). Nucleic Acids Res. 33, D154–D159 (2005).

    CAS  PubMed  Google Scholar 

  84. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    CAS  PubMed  Google Scholar 

  86. Steuernagel, B. et al. The NLR-Annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 183, 468–482 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, C., Dong, S.-S., Xu, J.-Y., He, W.-M. & Yang, T.-L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).

    CAS  PubMed  Google Scholar 

  95. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  PubMed  Google Scholar 

  96. Yang, T. Genome annotation files of Rosa hybrida ‘Samantha®’. figshare https://doi.org/10.6084/m9.figshare.22774097.v1 (2024).

Download references

Acknowledgements

We thank T. Lin (China Agricultural University) and Q. Gao (BGI Tech., Beijing) for helpful discussions; H. Xin and Y. Bu (Beijing Institute of Landscape Architecture) for providing computing resources and Rosa materials; the Center of Agricultural Biotechnology of Beijing Academy of Agriculture and Forestry Sciences and Golden Intelligence Biotechnology Co., Ltd. for help with flow cytometry experiments; and Wuhan Grandomics Biosciences Co., Ltd. for providing Pore-C sequencing and analysis services. This work was supported by funds from the 111 Project of the Ministry of Education (Grant no. B17043 to J.G.), the Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects (Grant no. CEFF-PXM2019_014207_000032 to J.G.), the National Key Research and Development Program of China (Grant no. 2018YFD1000400 to J.G.), the General Project of Shenzhen Science and Technology and Innovation Commission (Grant no. 21K270360620 to Y. Li.), the National Natural Science Foundation of China (Grant no. 32372752 to Y. Li., 31772344 and 31972444 to Z.Z., and 31522049 and 31872148 to N.M.), the National Science Fund for Distinguished Young Scholars of China (Grant no. 32325046 to N.M.), the earmarked fund for CARS (Grant no. CARS-23 to N.M.), and the Postdoctoral Fellowship Program of CPSF (Grant no. GZB20240831 to T.Y.).

Author information

Authors and Affiliations

Authors

Contributions

J.G., N.M., Z.F. and Z.Z. designed and coordinated the project. Y. Liu., W.W., H.R. and S.S. performed DNA extraction. T.Y. and Y. Liu. performed the flow cytometry analysis. Y.Y., L.L., S.D., Y. Zhu., Y.C., H. Zhou., H. Zhang., J.C. and K.T. contributed Rosa materials. Z.Z., Y. Liu., Y. Li., T.Y., Q.P., X.S., Y.J. and X.Z. coordinated sample collection and sequence data generation. T.Y., D.G., L.C., S.W., S.S., H.S., J.W. and Y. Zhang integrated the genome assembly and annotation. T.Y. and H.S. performed selective sweep analysis. T.Y., H.S., J.W. and Y. Zhang conducted phylogenetic and population genomic analysis. T.Y., Y. Liu., J.W., S.W., Z.Z., Y. Li, Z.F., N.M. and J.G. wrote and revised the manuscript.

Corresponding authors

Correspondence to Zhangjun Fei, Nan Ma or Junping Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Fabrice Foucher, Paul Arens and Diana Lopez Arias for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phenotype and chromosome number of R. hybrida ‘Samantha®’.

a, Flower, leaf, and stem of ‘Samantha®’. b, Chromosomes of ‘Samantha®’ shown in a representative root cell.

Extended Data Fig. 2 Chromosomal synteny analysis.

Genome synteny between R. hybrida ‘Samantha®’ and R. chinensis ‘Old Blush’8.

Extended Data Fig. 3 Pore-C and Hi-C heatmaps of the assembled R. hybrida ‘Samantha®’ genome.

The signal intensity of the Pore-C heatmap is expressed as loge (Z+1), while the signal intensity of Hi-C heatmap is expressed as log10 (Z+1). Z represents the calculated interaction intensity.

Extended Data Fig. 4 Inflorescence traits of different rose accessions.

The inflorescence traits of the wild species R. multiflora have been passed down to Hybrid Multiflora and Floribunda.

Extended Data Fig. 5 Genetic organization of the 28 chromosomes of R. hybrida ‘Samantha®’.

Different colors represent genome regions derived from different potential original species.

Extended Data Fig. 6 Pore-C heatmaps showing the inversion sites of the four homologous chromosomes of Chr7.

a, Pore-C signals between homologous chromosomes of Chr7. Blue arrows indicate the inversion signal between homologous chromosomes. b, Pore-C signals in the inversion regions between homologous chromosomes. Black cross lines indicate the inversion regions. The signal intensity of the Pore-C heatmap is expressed as loge (Z+1). Z represents the calculated interaction intensity.

Extended Data Fig. 7 Collinearity analysis of the region on chromosome 7 harboring an inversion.

Four publicly available Rosa genomes, R. chinensis ‘Old Blush’8, R. chinensis ‘Chilong Hanzhu’16, R. rugosa17 and R. wichuraiana18, were used. The potential origins of this region in the ‘Samantha®’ genome are indicated with different colors.

Extended Data Fig. 8 Selection and evolution of recurrent blooming in modern roses.

a,d, π ratio and FST values in the selective sweep region containing the KSN genes. b,e, Genes in the selective sweep region. Blue boxes represent genes located on the sense strand, while yellow boxes represent genes located on the antisense strand. c,f, Heatmap of SNP genotype profiles in the selective sweep region. Maximum likelihood phylogenetic tree constructed from these SNPs is shown on the left. The rectangular boxes on the right indicate the sections to which the samples belong. Hyb, modern cultivars, R. hybrida; Syn, section Synstylae; Syn-Rm, R. moschata; Chi-Rc, R. chinensis in section Chinenses; Chi-Ro, R. odorata in section Chinenses; Rosa, section Rosa; Can, section Caninae; Cin, section Cinnamomeae; Other, sections Pimpinellifoliae, Microphyllae, Bracteatae, Banksianae, and Laevigatae.

Extended Data Fig. 9 Selection and evolution of double flower in modern roses.

a,d, π ratio and FST values in the selective sweep region containing the AP2 genes. b,e, Genes in the selective sweep region. Blue boxes represent genes located on the sense strand, while yellow boxes represent genes located on the antisense strand. c,f, Heatmap of SNP genotype profiles in the selective sweep region. Maximum likelihood phylogenetic tree constructed from these SNPs is shown on the left. The rectangular boxes on the right indicate the sections to which the samples belong. Hyb, modern cultivars, R. hybrida; Syn, section Synstylae; Syn-Rm, R. moschata; Chi-Rc, R. chinensis in section Chinenses; Chi-Ro, R. odorata in section Chinenses; Rosa, section Rosa; Can, section Caninae; Cin, section Cinnamomeae; Other, sections Pimpinellifoliae, Microphyllae, Bracteatae, Banksianae, and Laevigatae.

Extended Data Fig. 10 Selection and evolution of ethylene sensitivity in modern roses.

a, π ratio and FST values in the selective sweep region containing CTR1 and ROS1 genes. b, Genes in the selective sweep region. Blue boxes represent genes located on the sense strand, while yellow boxes represent genes located on the antisense strand. c, Heatmap of SNP genotype profiles in selective sweep regions. Maximum likelihood phylogenetic tree is shown on the left. The rectangular boxes on the right indicate the sections to which the samples belong. Hyb, modern cultivars, R. hybrida; Syn, section Synstylae; Syn-Rm, R. moschata; Chi-Rc, R. chinensis in section Chinenses; Chi-Ro, R. odorata in section Chinenses; Rosa, section Rosa; Can, section Caninae; Cin, section Cinnamomeae; Other, sections Pimpinellifoliae, Microphyllae, Bracteatae, Banksianae, and Laevigatae.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Figs. 1–9.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yang, T., Liu, Y. et al. Haplotype-resolved genome assembly and resequencing provide insights into the origin and breeding of modern rose. Nat. Plants 10, 1659–1671 (2024). https://doi.org/10.1038/s41477-024-01820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-024-01820-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research