Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells

Abstract

The preferential activation of regulatory T (Treg) cells by interleukin-2 (IL-2), which selectively binds to the trimeric IL-2 receptor (IL-2R) on Treg cells, makes this cytokine a promising therapeutic for the treatment of autoimmune diseases. However, IL-2 has a narrow therapeutic window and a short half-life. Here, we show that the pharmacokinetics and half-life of IL-2 can be substantially improved by orthogonally conjugating the cytokine to poly(ethylene glycol) (PEG) moieties via a copper-free click reaction through the incorporation of azide-bearing amino acids at defined sites. Subcutaneous injection of a PEGylated IL-2 that optimally induced sustained Treg-cell activation and expansion over a wide range of doses through highly selective binding to trimeric IL-2R led to enhanced therapeutic efficacy in mouse models of lupus, collagen-induced arthritis and graft-versus-host disease without compromising the immune defences of the host against viral infection. Site-specific PEGylation could be used more generally to engineer cytokines with improved therapeutic performance for the treatment of autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Site-specific PEGylation of human IL-2 mediated by amber codon suppression and screening of resultant PEGylated variants with differential binding to the α or β subunit of IL-2R for identification of receptor-biased IL-2 ligands showing the highest level of selectivity to trimeric IL-2Rs.
Fig. 2: Profiling of the receptor-biased IL-2 PEGylates in terms of selective activation of Treg cells versus CD8+ T cells in vitro.
Fig. 3: Evaluation of the effects of PEGylation on the pharmacokinetic properties of IL-2.
Fig. 4: Prevention of disease aggravation in GvHD mice by PEGylated IL-2 variants through selective Treg-cell proliferation and activation.
Fig. 5: Dual-31/51-20K ameliorated SLE in MRL/lpr mice and ex vitro preferential activation of human Treg cells from patients with SLE.
Fig. 6: Dual-31/51-20K-mediated amelioration of CIA.
Fig. 7: Assessment of the impact of IL-2 PEGylation on the immune responses of mice to the influenza virus.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding authors on reasonable request. The quaternary structure of IL-2 associated with the trimeric receptor is available from publicly available datasets (http://www1.rcsb.org).

References

  1. Klatzmann, D. & Abbas, A. K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 15, 283–294 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Abbas, A. K., Trotta, E., Simeonov, R. D., Marson, A. & Bluestone, J. A. Revisiting IL-2: biology and therapeutic prospects. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aat1482 (2018).

  3. Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. He, J. et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 79, 141–149 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Rosenzwajg, M. et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 78, 209–217 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Mizui, M. & Tsokos, G. C. Low-dose IL-2 in the treatment of lupus. Curr. Rheumatol. Rep. 18, 68 (2016).

    Article  PubMed  Google Scholar 

  7. Kim, N. et al. Therapeutic potential of low-dose IL-2 in a chronic GVHD patient by in vivo expansion of regulatory T cells. Cytokine 78, 22–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Dwyer, C. J., Ward, N. C., Pugliese, A. & Malek, T. R. Promoting immune regulation in type 1 diabetes using low-dose interleukin-2. Curr. Diab. Rep. 16, 46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Pol, J. G., Caudana, P., Paillet, J., Piaggio, E. & Kroemer, G. Effects of interleukin-2 in immunostimulation and immunosuppression. J. Exp. Med. https://doi.org/10.1084/jem.20191247 (2020).

  13. Lotze, M. T. et al. In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J. Immunol. 135, 2865–2875 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924–1927 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mitra, S. et al. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42, 826–838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ward, N. C. et al. IL-2/CD25: a long-acting fusion protein that promotes immune tolerance by selectively targeting the IL-2 receptor on regulatory T cells. J. Immunol. 201, 2579–2592 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spangler, J. B. et al. Engineering a single-agent cytokine/antibody fusion that selectively expands regulatory T cells for autoimmune disease therapy. J. Immunol. 201, 2094–2106 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Trotta, E. et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat. Med. 24, 1005–1014 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rao, B. M., Girvin, A. T., Ciardelli, T., Lauffenburger, D. A. & Wittrup, K. D. Interleukin-2 mutants with enhanced alpha-receptor subunit binding affinity. Protein Eng. 16, 1081–1087 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Carmenate, T. et al. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2. J. Immunol. 190, 6230–6238 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, D. V., Maier, L. M., Hafler, D. A. & Wittrup, K. D. Engineered interleukin-2 antagonists for the inhibition of regulatory T cells. J. Immunother. 32, 887–894 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carmenate, T. et al. Blocking IL-2 signal in vivo with an IL-2 antagonist reduces tumor growth through the control of regulatory T cells. J. Immunol. 200, 3475–3484 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Karakus, U. et al. Receptor-gated IL-2 delivery by an anti-human IL-2 antibody activates regulatory T cells in three different species. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abb9283 (2020).

  26. Lee, J. Y. et al. TCB2, a new anti-human interleukin-2 antibody, facilitates heterodimeric IL-2 receptor signaling and improves anti-tumor immunity. Oncoimmunology 9, 1681869 (2020).

    Article  PubMed  Google Scholar 

  27. Arenas-Ramirez, N. et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl. Med. 8, 367ra166 (2016).

    Article  PubMed  Google Scholar 

  28. Spangler, J. B. et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 42, 815–825 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sahin, D. et al. An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer. Nat. Commun. 11, 6440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peterson, L. B. et al. A long-lived IL-2 mutein that selectively activates and expands regulatory T cells as a therapy for autoimmune disease. J. Autoimmun. 95, 1–14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pasut, G. & Veronese, F. M. State of the art in PEGylation: the great versatility achieved after forty years of research. J. Control. Release 161, 461–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Charych, D. H. et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22, 680–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Tian, F. et al. A general approach to site-specific antibody drug conjugates. Proc. Natl Acad. Sci. USA 111, 1766–1771 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cho, H. et al. Optimized clinical performance of growth hormone with an expanded genetic code. Proc. Natl Acad. Sci. USA 108, 9060–9065 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, B. et al. Development of next generation of therapeutic IFN-α2b via genetic code expansion. Acta Biomater. 19, 100–111 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, L. et al. Precise and combinatorial PEGylation generates a low-immunogenic and stable form of human growth hormone. J. Control. Release 249, 84–93 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Mbua, N. E., Guo, J., Wolfert, M. A., Steet, R. & Boons, G. J. Strain-promoted alkyne-azide cycloadditions (SPAAC) reveal new features of glycoconjugate biosynthesis. ChemBioChem 12, 1912–1921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nguyen, D. P. et al. Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA synthetase/tRNACUA pair and click chemistry. J. Am. Chem. Soc. 131, 8720–8721 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Stauber, D. J., Debler, E. W., Horton, P. A., Smith, K. A. & Wilson, I. A. Crystal structure of the IL-2 signaling complex: paradigm for a heterotrimeric cytokine receptor. Proc. Natl Acad. Sci. USA 103, 2788–2793 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, X., Rickert, M. & Garcia, K. C. Structure of the quaternary complex of interleukin-2 with its α, β, and γc receptors. Science 310, 1159–1163 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, A. et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 64, 2172–2183 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Miksa, M., Komura, H., Wu, R., Shah, K. G. & Wang, P. A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. J. Immunol. Methods 342, 71–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rao, B. M., Driver, I., Lauffenburger, D. A. & Wittrup, K. D. High-affinity CD25-binding IL-2 mutants potently stimulate persistent T cell growth. Biochemistry 44, 10696–10701 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Dominguez-Villar, M. & Hafler, D. A. Regulatory T cells in autoimmune disease. Nat. Immunol. 19, 665–673 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brand, D. D., Latham, K. A. & Rosloniec, E. F. Collagen-induced arthritis. Nat. Protoc. 2, 1269–1275 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Krieg, C., Letourneau, S., Pantaleo, G. & Boyman, O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc. Natl Acad. Sci. USA 107, 11906–11911 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ito, T. et al. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28, 870–880 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gesbert, F., Sauvonnet, N. & Dautry-Varsat, A. Clathrin-independent endocytosis and signalling of interleukin 2 receptors IL-2R endocytosis and signalling. Curr. Top. Microbiol. Immunol. 286, 119–148 (2004).

    CAS  PubMed  Google Scholar 

  49. Li, Y. et al. Regulatory T cells control toxicity in a humanized model of IL-2 therapy. Nat. Commun. 8, 1762 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Arce Vargas, F. et al. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46, 577–586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hofmann, K., Clauder, A. K. & Manz, R. A. Targeting B cells and plasma cells in autoimmune diseases. Front. Immunol. 9, 835 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mizui, M. Natural and modified IL-2 for the treatment of cancer and autoimmune diseases. Clin. Immunol. 206, 63–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Verhoef, J. J., Carpenter, J. F., Anchordoquy, T. J. & Schellekens, H. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov. Today 19, 1945–1952 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Garay, R. P., El-Gewely, R., Armstrong, J. K., Garratty, G. & Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv. 9, 1319–1323 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Tao, X., Fan, F., Hoffmann, V., Longo, N. S. & Lipsky, P. E. Therapeutic impact of the ethyl acetate extract of Tripterygium wilfordii Hook F on nephritis in NZB/W F1 mice. Arthritis Res. Ther. 8, R24 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang, H. et al. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nat. Immunol. 2, 632–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Deng, G. M., Zheng, L., Chan, F. K. & Lenardo, M. Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nat. Med. 11, 1066–1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, J. et al. Klebsiella pneumoniae alleviates influenza-induced acute lung injury via limiting NK cell expansion. J. Immunol. 193, 1133–1141 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Z. Tian (University of Science and Technology of China, Hefei) for gifting the YT cell line; Y. Hou for her support with flow cytometry technology and D. Liu (Peking University) for her participation in mass spectrometry experiments; X. Wu from the X.Z. laboratory and H. Li from the Tsokos laboratory for their discussions; and all of the donors who participated in the study. This study was supported by grants from the National Key Research and Development Program of China (no. 2019ZX09739), National Natural Science Foundation of China (nos 81788101, 81803419, 81630044, 81802121, 21805311), Chinese Academy of Medical Science Innovation Fund for Medical Sciences (nos CIFMS2016-12M-1-003, 2017-12M-1-008, 2017-I2M-3-011, 2016-12M-1-008) and Capital’s Funds for Health Improvement and Research (no. 2020-2-4019).

Author information

Authors and Affiliations

Authors

Contributions

B.Z., Y.W., J.S., D.Z. and X.Z. designed the study. B.Z., Y.W., J.S., Y.H., J.H., Y.Y. and Y.S. performed the experiments in vitro and in vivo and analysed the data. D.J. and F.Y. performed experiments of chemical synthesis. S.L. contributed to the crystal structure analysis and site selection. W.M. and B.C. performed experiments with influenza virus. P.L., L.W., W.S., M.W. and X.L. contributed to the collection and assembly of data and polished the language. L. Zhao, H.C., Y.F., H.L., L. Zhang and G.C.T. provided comments. B.Z., D.Z., G.C.T. and Z.X. wrote and reviewed the manuscript. All of the authors reviewed the manuscript.

Corresponding authors

Correspondence to George C. Tsokos, Demin Zhou or Xuan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Onur Boyman, David Klatzmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterization of the binding of representative PEGylated variants to dimeric or trimeric IL-2Rs, assessed by surface plasmon resonance (SPR), for identification of IL-2 PEGylates showing the highest level of selectivity towards trimeric IL-2Rs.

Fc-tagged extracellular domains of the IL-2R subunits were immobilized on a CM5 chip at an equimolar ratio. Three representative concentrations of each sample in a series of 3-fold dilutions for trimeric (3.3, 10 and 30 nM) or dimeric (33.3, 100 and 300 nM) IL-2R complexes are presented. All kinetic parameters are provided in S Table 2. Representative results from one of two independent experiments are shown. See also Fig. 1.

Extended Data Fig. 2 Validation of Treg-selective activation, as reflected by increased expression of CD25 and FoxP3 by PEGylated IL-2s in a xeno-GvHD mouse model.

The MFI bars graphs (top) and flow cytometry histograms (bottom) of induced CD25 and Foxp3 on Tregs and CD8 + T cells in response to IL-2 and its PEGylated variants at a dose of 2 µg, with PBS as the background. The data are presented as the mean ± SEM, n = 3 biologically independent mice per group. Statistical analysis was performed using one-way ANOVA (Dunnett’s multiple-comparison test compared with IL-2 treated group). Representative results from one of three independent experiments are shown. See also Fig. 4a, b.

Extended Data Fig. 3 Dual-31/51-20K-mediated mitigation of kidney lesions in MRL/lpr mice.

The ability of dual-31/51-20 K to reduce kidney lesions, as reflected by H&E staining of the 0.5 µg treatment groups, with the mononuclear cells infiltrating into the cortical tubulointerstitial/perivascular areas and the scores of glomerular and perivascular lesions shown by arrows and bar graphs, respectively. The data are presented as the mean ± SEM, n = 4 biologically independent mice per group. Statistical analysis was performed using one-way ANOVA (Dunnett’s multiple-comparison test compared with PBS treated group). Representative results from one of two experiments are shown. See also Fig. 5b, c.

Extended Data Fig. 4 The effects of IL-2 versus dual-31/51-20 K on activation of pulmonary NK cells.

Bar graphs show the expression of activated markers, including NKG2D, NKp46, and CD69, on pulmonary NK cells of mice with indicated treatment. Data are presented as the mean ± SEM, n = 4 biologically independent mice per group. Statistical analysis was performed using one-way ANOVA (Dunnett’s multiple-comparison test compared with + virus/PBS-treated group). The experiment was repeated three times with similar results, and one of three representative results is shown. See also Fig. 7c.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19 and Tables 1–3.

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Sun, J., Wang, Y. et al. Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells. Nat Biomed Eng 5, 1288–1305 (2021). https://doi.org/10.1038/s41551-021-00797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-021-00797-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research