Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering a macromolecular JAK inhibitor for treating acute inflammation and endotoxaemia

Abstract

Uncontrolled and sustained inflammation is inextricably associated with the pathogenesis of numerous diseases. However, there is still demand for effective and safe anti-inflammatory therapies. Here we report a potent anti-inflammatory macromolecular therapy named HPL, created by conjugating polyethylene glycol and luminol onto a multivalent and hydrolysable cyclic structure. Leveraging its amphiphilic nature, HPL can spontaneously self-assemble into micelles capable of targeting inflamed tissues and localizing in inflammatory cells. In mice with acute lung, kidney and liver injuries, as well as endotoxaemia, HPL shows anti-inflammatory effects that rivals or surpasses those of two commonly used anti-inflammatory drugs. HPL micelles can act as bioactive and inflammation-responsive carriers for site-specific delivery to release anti-inflammatory drugs. Mechanistically, HPL exerts its anti-inflammatory activity mainly by inhibiting the IL-6/JAK2/STAT3 signalling pathway. HPL shows favourable safety profiles in mice at doses at least 5-fold higher than those used in therapeutic studies. These findings suggest that HPL holds great promise as a highly potent, cost-effective and safe JAK2 inhibitor for treating various diseases associated with inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of an anti-inflammatory macromolecule and the derived micellar therapy for the treatment of acute inflammatory diseases by normalizing the pathological microenvironment via regulating the JAK2/STAT3 signalling pathway.
Fig. 2: In vitro anti-inflammatory effects of HPL in macrophages and neutrophils.
Fig. 3: In vivo targeting and therapeutic effects of HPL in mice with ALI.
Fig. 4: Therapeutic effects of HPL in AKI mice.
Fig. 5: In vivo targeting and therapeutic effects of HPL in ALF mice.
Fig. 6: In vivo therapeutic effects of HPL in mice with LPS-induced endotoxaemia.
Fig. 7: Therapeutic effects of Rap/HPL in ALI mice.
Fig. 8: HPL reverses inflammatory response by inhibiting the IL-6/JAK2/STAT3 signalling pathway.

Similar content being viewed by others

Data availability

The data presented in the study have been provided in the Article and Supplementary Information. The RNA-seq data from mouse lung tissues generated in this study have been deposited in the China National Center for Bioinformation Genome Sequence Archive database under accession number CRA028017 (ref. 75). Source data are provided with this paper.

References

  1. Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lamers, M. M. & Haagmans, B. L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 20, 270–284 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, D. et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil. Med. Res. 9, 56 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Peerapornratana, S., Manrique-Caballero, C. L., Gómez, H. & Kellum, J. A. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 96, 1083–1099 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kong, P. et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 7, 131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Varricchi, G. et al. Biologics and airway remodeling in severe asthma. Allergy 77, 3538–3552 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Tansey, M. G. et al. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 22, 657–673 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tabas, I. & Glass, C. K. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339, 166–172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bjarnason, I. et al. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology 154, 500–514 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Andrade, R. J. et al. Drug-induced liver injury. Nat. Rev. Dis. Prim. 5, 58 (2019).

    Article  PubMed  Google Scholar 

  11. Perazella, M. A. & Rosner, M. H. Drug-induced acute kidney injury. Clin. J. Am. Soc. Nephrol. 17, 1220–1233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grosser, T., Ricciotti, E. & FitzGerald, G. A. The cardiovascular pharmacology of nonsteroidal anti-inflammatory drugs. Trends Pharmacol. Sci. 38, 733–748 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chotiyarnwong, P. & McCloskey, E. V. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat. Rev. Endocrinol. 16, 437–447 (2020).

    Article  PubMed  Google Scholar 

  14. Li, J. X. & Cummins, C. L. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat. Rev. Endocrinol. 18, 540–557 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dinarello, C. A. Anti-inflammatory agents: present and future. Cell 140, 935–950 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brusselle, G. G. & Koppelman, G. H. Biologic therapies for severe asthma. N. Engl. J. Med. 386, 157–171 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Taylor, P. C. & Feldmann, M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Borman, Z. A., Cote-Daigneault, J. & Colombel, J. F. The risk for opportunistic infections in inflammatory bowel disease with biologics: an update. Expert Rev. Gastroent. Hepatol. 12, 1101–1108 (2018).

    Article  CAS  Google Scholar 

  20. Khilfeh, I. et al. Adherence, persistence, and expenditures for high-cost anti-inflammatory drugs in rheumatoid arthritis: an exploratory study. J. Manag. Care Spec. Pharm. 25, 461–467 (2019).

    PubMed  Google Scholar 

  21. Vermeire, S., Gils, A., Accossato, P., Lula, S. & Marren, A. Immunogenicity of biologics in inflammatory bowel disease. Therap. Adv. Gastroenterol. 11, 1–13 (2018).

    Article  Google Scholar 

  22. Wei, X. et al. Development of a Janus kinase inhibitor prodrug for the treatment of rheumatoid arthritis. Mol. Pharm. 15, 3456–3467 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, G. et al. A macromolecular janus kinase (jak) inhibitor prodrug effectively ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Pharm. Res. 36, 64 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Németh, T., Sperandio, M. & Mócsai, A. Neutrophils as emerging therapeutic targets. Nat. Rev. Drug Discov. 19, 253–275 (2020).

    Article  PubMed  Google Scholar 

  25. Toldo, S. et al. Targeting the nlrp3 inflammasome in cardiovascular diseases. Pharmacol. Ther. 236, 108053 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Fullerton, J. N. & Gilroy, D. W. Resolution of inflammation: a new therapeutic frontier. Nat. Rev. Drug Discov. 15, 551–567 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Mehrotra, P. & Ravichandran, K. S. Drugging the efferocytosis process: concepts and opportunities. Nat. Rev. Drug Discov. 21, 601–620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tu, Z. X. et al. Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 7, 557–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuan, D., Li, C., Huang, Q., Fu, X. & Dong, H. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Crit. Rev. Food Sci. Nutr. 63, 5890–5910 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Hu, K. et al. Pathogenesis-guided rational engineering of nanotherapies for the targeted treatment of abdominal aortic aneurysm by inhibiting neutrophilic inflammation. ACS Nano 18, 6650–6672 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Nishiguchi, A. & Taguchi, T. Oligoethyleneimine-conjugated hyaluronic acid modulates inflammatory responses and enhances therapeutic efficacy for ulcerative colitis. Adv. Funct. Mater. 31, 2100548 (2021).

    Article  CAS  Google Scholar 

  32. Li, L. et al. A broad-spectrum ROS-eliminating material for prevention of inflammation and drug-induced organ toxicity. Adv. Sci. 5, 1800781 (2018).

    Article  Google Scholar 

  33. Cai, J. et al. Intrinsically bioactive and biomimetic nanoparticle-derived therapies alleviate asthma by regulating multiple pathological cells. Bioact. Mater. 28, 12–26 (2023).

    PubMed  PubMed Central  Google Scholar 

  34. Delaveris, C. S. et al. Synthetic Siglec-9 agonists inhibit neutrophil activation associated with COVID-19. ACS Cent. Sci. 7, 650–657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramadan, S. et al. Chemical synthesis and anti-inflammatory activity of bikunin associated chondroitin sulfate 24-mer. ACS Cent. Sci. 6, 913–920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dernedde, J. et al. Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc. Natl Acad. Sci. USA 107, 19679–19684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Posadas, I. et al. Neutral high-generation phosphorus dendrimers inhibit macrophage-mediated inflammatory response in vitro and in vivo. Proc. Natl Acad. Sci. USA 114, E7660–e7669 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hainline, K. M. et al. Modular complement assemblies for mitigating inflammatory conditions. Proc. Natl Acad. Sci. USA 118, e2018627118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, H. Y. et al. Rational engineering of a mitochondrial-mimetic therapy for targeted treatment of dilated cardiomyopathy by precisely regulating mitochondrial homeostasis. Adv. Funct. Mater. 33, 2301918 (2023).

    Article  CAS  Google Scholar 

  40. Eguchi, A. et al. Redox nanoparticles as a novel treatment approach for inflammation and fibrosis associated with nonalcoholic steatohepatitis. Nanomedicine 10, 2697–2708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, Y. et al. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 19, 118–126 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, J. Y. et al. Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury. Biomaterials 133, 1–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Li, L. et al. Site-specific inhibition of neutrophilic inflammation by low-dose nanotherapy for immunoregulatory treatment of asthma. Nano Today 52, 101957 (2023).

    Article  CAS  Google Scholar 

  44. Wang, Y. et al. Targeted therapy of atherosclerosis by a broad-spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory activity. ACS Nano 12, 8943–8960 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Li, G. et al. Stem cell-niche engineering via multifunctional hydrogel potentiates stem cell therapies for inflammatory bone loss. Adv. Funct. Mater. 33, 2209466 (2023).

    Article  CAS  Google Scholar 

  46. Holl, E. K. et al. Scavenging nucleic acid debris to combat autoimmunity and infectious disease. Proc. Natl Acad. Sci. USA 113, 9728–9733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu, H. F., Kong, B., Che, J. Y., Zhao, Y. J. & Sun, L. Y. Bioinspired nanogels as cell-free DNA trapping and scavenging organelles for rheumatoid arthritis treatment. Proc. Natl Acad. Sci. USA 120, e2303385120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo, J. et al. A myeloperoxidase-responsive and biodegradable luminescent material for real-time imaging of inflammatory diseases. Mater. Today 20, 493–500 (2017).

    Article  CAS  Google Scholar 

  49. Gross, S. et al. Bioluminescence imaging of myeloperoxidase activity in vivo. Nat. Med. 15, 455–461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barni, F., Lewis, S. W., Berti, A., Miskelly, G. M. & Lago, G. Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 72, 896–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Larkin, T. & Gannicliffe, C. Illuminating the health and safety of luminol. Sci. Justice 48, 71–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Guo, J. et al. Cyclodextrin-derived intrinsically bioactive nanoparticles for treatment of acute and chronic inflammatory diseases. Adv. Mater. 31, e1904607 (2019).

    Article  PubMed  Google Scholar 

  53. Yang, C. et al. Supramolecular nanostructures designed for high cargo loading capacity and kinetic stability. Nano Today 5, 515–523 (2010).

    Article  CAS  Google Scholar 

  54. Palei, N. N., Rajangam, J., Samineni, R., Dhar, A. K. & Balaji, A. Formulation and evaluation of mixed micelles containing quercetin for inhibiting intestinal metabolism of atorvastatin. FABAD J. Pharm. Sci. 49, 51–64 (2024).

    Google Scholar 

  55. Qi, Y. et al. Advanced nanotherapies for precision treatment of inflammatory lung diseases. Bioact. Mater. 53, 329–365 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Brusini, R., Varna, M. & Couvreur, P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv. Drug Deliv. Rev. 157, 161–178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yuan, F., Quan, L. D., Cui, L., Goldring, S. R. & Wang, D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 64, 1205–1219 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, D. et al. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. Sci. Adv. 6, eabb7422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, K., Wang, F. S. & Xu, R. Neutrophils in liver diseases: pathogenesis and therapeutic targets. Cell. Mol. Immunol. 18, 38–44 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, J., Kang, R. & Tang, D. Lipopolysaccharide delivery systems in innate immunity. Trends Immunol. 45, 274–287 (2024).

    Article  CAS  PubMed  Google Scholar 

  61. Pålsson-McDermott, E. M. & O’Neill, L. A. J. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 30, 300–314 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Talpaz, M. & Kiladjian, J. J. Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia 35, 1–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Holford, N. in Dose Finding in Drug Development (ed. Ting, N.) 73–88 (Springer, 2006).

  64. Ahmed, T. et al. Evaluation of the anti-inflammatory activities of diclofenac sodium, prednisolone and atorvastatin in combination with ascorbic acid. Antiinflamm. Antiallergy Agents Med. Chem. 19, 291–301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhai, Z. et al. Dexamethasone-loaded ROS-responsive poly(thioketal) nanoparticles suppress inflammation and oxidative stress of acute lung injury. Bioact. Mater. 14, 430–442 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. El-Mashad, A. E., El-Mahdy, H., El Amrousy, D. & Elgendy, M. Comparative study of the efficacy and safety of paracetamol, ibuprofen, and indomethacin in closure of patent ductus arteriosus in preterm neonates. Eur. J. Pediatr. 176, 233–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Qian, M. et al. Pick1 deficiency exacerbates sepsis-associated acute lung injury and impairs glutathione synthesis via reduction of xct. Free Radic. Biol. Med. 118, 23–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Jhundoo, H. D. et al. Anti-inflammatory activity of chitosan and 5-amino salicylic acid combinations in experimental colitis. Pharmaceutics 12, 1038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Medzhitov, R. The spectrum of inflammatory responses. Science 374, 1070–1075 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Musumeci, F. et al. An update on jak inhibitors. Curr. Med. Chem. 26, 1806–1832 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Xue, C. et al. Evolving cognition of the jak-stat signaling pathway: autoimmune disorders and cancer. Signal Transduct. Target. Ther. 8, 204 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kubo, S., Nakayamada, S. & Tanaka, Y. JAK inhibitors for rheumatoid arthritis. Expert. Opin. Investig. Drugs 32, 333–344 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Núñez, P., Quera, R. & Yarur, A. J. Safety of Janus kinase inhibitors in inflammatory bowel diseases. Drugs 83, 299–314 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ytterberg, S. R. et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N. Engl. J. Med. 386, 316–326 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, J. X. et al. Engineering a macromolecular JAK inhibitor for treating acute inflammation and endotoxemia. Genome Sequence Archive CRA028017. https://ngdc.cncb.ac.cn/gsa/browse/CRA028017 (2025).

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (number 32271451) to J.Z., the Key Program for Technological Innovation and Application Development of Chongqing (number CSTB2022TIAD-KPX0156) to J.Z., the Key Medical Program Integrated by Chongqing Science and Technology Bureau and Chongqing Health Commission (number 2023GGXM005) to J.Z. and the Graduate Supervisor Team Program of Chongqing in 2022 to J.Z.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. conceived the project. M.Z., G.L. and J.Z. designed the experiments. M.Z., Y.W., B.Y., Y.Z., L.Z. and K.H. performed all the experiments. M.Z., Y.W., W.P., G.L. and J.Z. analysed the data and composed the manuscript. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Gaoxing Luo or Jianxiang Zhang.

Ethics declarations

Competing interests

M.Z., K.H. and J.Z. are inventors in a pending patent filed by the China National Intellectual Property Administration (number 2025101169778, 24 January 2025) related to HPL-based therapies, but the rights belong to the Third Military Medical University and Yu-Yue Pathology Scientific Research Center. All other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Synthesis and characterization of HPL.

a, The synthetic route of HPL. b-d, 1H NMR (b), and FT-IR (c), and UV-visible spectra (d) of different materials. e-f, Matrix-assisted laser desorption/ionization time-of-flight mass spectra of PEG-NH2 (e) and HPL (f).

Source data

Extended Data Fig. 2 Effects of different treatments on cellular uptake of HPL in macrophages.

a, Confocal images showing cellular uptake of HPL in macrophages incubated under various conditions. b-c, Typical flow cytometric profiles (b) and quantitative analysis (c) indicating cellular uptake of Cy5-HPL after different treatments (n = 4 samples). Cells in the control group were incubated with Cy5-HPL in medium alone. In other groups, cells were pre-incubated at 4 °C or pre-treated with different endocytosis inhibitors (including MeβCD, EIPA, cytochalasin D, genistein, and nocodazole) for 1 h, followed by incubation with Cy5-HPL for 2 h. d. Confocal microscopic images show colocalization of Cy5-HPL with endolysosomes. Lysosomes were stained with LysoTracker (green), while nuclei were stained with Hoechst 33342 (blue). The results represent biological replicates, with data expressed as mean ± standard error of the mean. P values were determined using one-way ANOVA followed by the LSD test for multiple comparisons.

Source data

Extended Data Fig. 3 Flow cytometric quantification of Cy5-HPL distribution in neutrophils and macrophages of lung tissues from ALI mice.

a, Typical flow cytometric dot plots show Cy5-HPL distribution profiles in neutrophils and macrophages in lung tissues. b-e, The quantified Cy5+ cell percentages (b, d) and counts (c, e) of neutrophils and macrophages (n = 6 mice). The results represent biological replicates, with data expressed as mean ± standard error of the mean. P values were determined using one-way ANOVA followed by the LSD test for multiple comparisons.

Source data

Extended Data Fig. 4 Analysis of cellular localization of Cy5-HPL in liver tissues of ALF mice.

a-b, Immunofluorescence analysis of the co-localization of Cy5-HPL with Ly6G+ neutrophils (a) and CD68+ macrophages (b) in liver tissue sections. c-d, Flow cytometric quantification of Cy5-HPL+ neutrophils (c) and Cy5-HPL+ macrophages (d) in liver tissues from AFL mice at 24 h after i.v. injection (n = 5 mice). Healthy mice without treatment with Cy5-HPL served as the control. The results represent biological replicates, with data expressed as mean ± standard error of the mean. P values were determined using one-way ANOVA followed by the LSD test for multiple comparisons.

Source data

Extended Data Fig. 5 Comparison of anti-inflammatory effects of HPL and luminol in macrophages.

a-d, The expression levels of TNF-α (a), IL-1β (b), IL-6 (c), and IL-8 (d) in macrophages stimulated with 500 ng/mL of LPS and treated with HPL and luminol sodium salt at the same dose of luminol (16 μmol/L) for 24 h (n = 3 samples). The results represent biological replicates, with data expressed as mean ± standard error of the mean. P values were determined using one-way ANOVA followed by the LSD test for multiple comparisons.

Source data

Extended Data Fig. 6 Comparison of in vivo therapeutic effects of HPL and luminol in ALI mice.

a, The lung wet-to-dry weight ratios of mice after treatment with luminol sodium salt and HPL by i.v. injection at 2.9 mg/kg luminol (n = 5 mice). b-f, The mRNA levels of TNF-α (b), IL-1β (c), IL-6 (d), MPO (e), and IL-8 (f) in lung tissues from ALI mice (n = 5 mice). g-k, The protein levels of TNF-α (g), IL-1β (h), IL-6 (i), IL-8 (j), and MPO (k) in BALFs (n = 5 mice). l-m, Flow cytometric profiles (l) and quantitative analysis (m) of neutrophils in BALFs (n = 5 mice). n, Micrographs of H&E-stained lung tissue sections. The results represent biological replicates, with data expressed as mean ± standard error of the mean. P values were determined using one-way ANOVA followed by the LSD test for multiple comparisons.

Source data

Extended Data Fig. 7 Comparison of in vivo therapeutic effects of HPL and typical anti-inflammatory drugs in ALI mice.

a, Schematic illustration of treatment regimens. b, The lung wet-to-dry weight ratios of mice after treatment with different formulations (n = 5 mice). c-f, The relative mRNA levels of TNF-α (c), IL-1β (d), IL-6 (e), and IL-8 (f) in lung tissues from ALI mice after treatment with different formulations (n = 6 mice). g-j, Quantified relative mRNA levels of TNF-α (g), IL-1β (h), IL-6 (i), and IL-8 (j) in BALFs (n = 3 mice). k, The mRNA level of MPO in lung tissues (n = 6 mice). l-m, Flow cytometric profiles (l) and quantitative analysis (m) of neutrophils in BALFs of ALI mice (n = 5 mice). n, Micrographs of H&E-stained lung tissue sections. Injured lesions in the lung tissues are indicated by black arrows. The results represent biological replicates, with data expressed as mean ± standard error of the mean. P values were determined using one-way ANOVA followed by the LSD test for multiple comparisons.

Source data

Extended Data Fig. 8 RNA-seq analysis of lung tissues from different groups.

a, The volcano map of genes detected in the model versus control groups. b, The volcano map of genes detected in the HPL versus model groups. c, The Veen diagram of DEGs between up-regulated DEGs of the model versus control groups and down-regulated DEGs of the HPL versus model groups. d, Ten significantly enriched biological processes (BP) terms of DEGs between the model and control groups. e, The PPI network of DEGs between the up-regulated DEGs of the model versus control groups and the down-regulated DEGs of the HPL versus model groups. f-g, The MCODE algorithm in Cytoscape to predict the key factors responsible for therapeutic mechanisms of HPL. Control, healthy mice treated with saline. Model, ALI mice induced by LPS and treated with saline. HPL, ALI mice treated with HPL. Replicates are biological.

Source data

Extended Data Fig. 9 Comparison of the anti-inflammatory effects of HPL with Fed.

a-d, The expression levels of TNF-α (a), IL-1β (b), IL-6 (c), and IL-8 (d) in macrophages stimulated with 500 ng/mL of LPS and treated with 5 μmol/L Fed or 16 μmol/L HPL for 24 h (n = 3 samples). The results represent biological replicates, with data expressed as mean ± standard error of the mean. P values were determined using one-way ANOVA followed by the LSD test for multiple comparisons.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Tables 1 and 2, materials and methods.

Reporting Summary

Peer Review File

Supplementary Source Data 1

Source data for Supplementary figures.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Wang, Y., Yang, B. et al. Engineering a macromolecular JAK inhibitor for treating acute inflammation and endotoxaemia. Nat. Biomed. Eng (2025). https://doi.org/10.1038/s41551-025-01521-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41551-025-01521-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing