Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures

Abstract

Coulombic interactions can be used to assemble charged nanoparticles into higher-order structures, but the process requires oppositely charged partners that are similarly sized. The ability to mediate the assembly of such charged nanoparticles using structurally simple small molecules would greatly facilitate the fabrication of nanostructured materials and harnessing their applications in catalysis, sensing and photonics. Here we show that small molecules with as few as three electric charges can effectively induce attractive interactions between oppositely charged nanoparticles in water. These interactions can guide the assembly of charged nanoparticles into colloidal crystals of a quality previously only thought to result from their co-crystallization with oppositely charged nanoparticles of a similar size. Transient nanoparticle assemblies can be generated using positively charged nanoparticles and multiply charged anions that are enzymatically hydrolysed into mono- and/or dianions. Our findings demonstrate an approach for the facile fabrication, manipulation and further investigation of static and dynamic nanostructured materials in aqueous environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrostatic co-assembly of positively charged NPs and negatively charged small molecules.
Fig. 2: MD simulations of electrostatic interactions between positively charged NPs and small anions.
Fig. 3: Dynamics of small anions and the annealing of TMA-functionalized Au NPs.
Fig. 4: Self-assembly of co-crystals of TMA-functionalized Au NPs and small anions.
Fig. 5: Electrostatic co-assembly of negatively charged NPs and positively charged small molecules.
Fig. 6: DSA of gold NPs driven by ATP.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the main text of the paper, the Supplementary Information and also from the corresponding author on request. Source data are provided with this paper.

References

  1. Sergeev, G. B. & Klabunde, K. J. Nanochemistry 2nd edn (Elsevier, 2013).

  2. Ozin, G. A., Arsenault, A. & Cademartiri, L. Nanochemistry: A Chemical Approach to Nanomaterials 2nd edn (RSC Publishing, 2008).

  3. Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bedanta, S. & Kleemann, W. Supermagnetism. J. Phys. D 42, 013001 (2009).

    Article  CAS  Google Scholar 

  5. Morup, S., Hansen, M. F. & Frandsen, C. Magnetic interactions between nanoparticles. Beilstein J. Nanotech. 1, 182–190 (2010).

    Article  CAS  Google Scholar 

  6. Song, L. & Deng, Z. Valency control and functional synergy in DNA-bonded nanomolecules. ChemNanoMat 3, 698–712 (2017).

    Article  CAS  Google Scholar 

  7. Wei, Y., Bishop, K. J. M., Kim, J., Soh, S. & Grzybowski, B. A. Making use of bond strength and steric hindrance in nanoscale ‘synthesis’. Angew. Chem. Int. Ed. 48, 9477–9480 (2009).

    Article  CAS  Google Scholar 

  8. Liu, K. et al. Step-growth polymerization of inorganic nanoparticles. Science 329, 197–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, K. et al. Copolymerization of metal nanoparticles: a route to colloidal plasmonic copolymers. Angew. Chem. Int. Ed. 53, 2648–2653 (2014).

    Article  CAS  Google Scholar 

  10. Klinkova, A., Thérien-Aubin, H., Choueiri, R. M., Rubinstein, M. & Kumacheva, E. Colloidal analogs of molecular chain stoppers. Proc. Natl Acad. Sci. USA 110, 18775–18779 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Udayabhaskararao, T. et al. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science 358, 514–518 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, S. et al. Colloidal crystal ‘alloys’. J. Am. Chem. Soc. 141, 20443–20450 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Girard, M. et al. Particle analogs of electrons in colloidal crystals. Science 364, 1174–1178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vasquez, Y., Henkes, A. E., Bauer, J. C. & Schaak, R. E. Nanocrystal conversion chemistry: a unified and materials-general strategy for the template-based synthesis of nanocrystalline solids. J. Solid State Chem. 181, 1509–1523 (2008).

    Article  CAS  Google Scholar 

  16. Krishnadas, K. R. et al. Interparticle reactions: an emerging direction in nanomaterials chemistry. Acc. Chem. Res. 50, 1988–1996 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Park, J., Zheng, H., Jun, Y.-w & Alivisatos, A. P. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 131, 13943–13945 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Skrabalak, S. E. et al. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41, 1587–1595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, H. et al. Sequential cation exchange in nanocrystals: preservation of crystal phase and formation of metastable phases. Nano Lett. 11, 4964–4970 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Hong, S., Choi, Y. & Park, S. Shape control of Ag shell growth on Au nanodisks. Chem. Mater. 23, 5375–5378 (2011).

    Article  CAS  Google Scholar 

  23. Buck, M. R. & Schaak, R. E. Emerging strategies for the total synthesis of inorganic nanostructures. Angew. Chem. Int. Ed. 52, 6154–6178 (2013).

    Article  CAS  Google Scholar 

  24. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Kalsin, A. M., Kowalczyk, B., Smoukov, S. K., Klajn, R. & Grzybowski, B. A. Ionic-like behavior of oppositely charged nanoparticles. J. Am. Chem. Soc. 128, 15046–15047 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Kalsin, A. M. & Grzybowski, B. A. Controlling the growth of ‘ionic’ nanoparticle supracrystals. Nano Lett. 7, 1018–1021 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, L. Y., Albouy, P. A. & Pileni, M. P. Synthesis and self-assembly behavior of charged Au nanocrystals in aqueous solution. Chem. Mater. 27, 4431–4440 (2015).

    Article  CAS  Google Scholar 

  28. Kostiainen, M. A. et al. Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nat. Nanotechnol. 8, 52–56 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Liljeström, V., Seitsonen, J. & Kostiainen, M. A. Electrostatic self-assembly of soft matter nanoparticle cocrystals with tunable lattice parameters. ACS Nano 9, 11278–11285 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Hassinen, J., Liljeström, V., Kostiainen, M. A. & Ras, R. H. A. Rapid cationization of gold nanoparticles by two-step phase transfer. Angew. Chem. Int. Ed. 54, 7990–7993 (2015).

    Article  CAS  Google Scholar 

  31. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008).

    Article  PubMed  CAS  Google Scholar 

  33. Beyeh, N. K. et al. Crystalline cyclophane–protein cage frameworks. ACS Nano 12, 8029–8036 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schulze, H. Schwefelarsen in wässriger lösung. J. Prakt. Chem. 25, 431–452 (1882).

    Article  Google Scholar 

  35. Hardy, W. B. A preliminary investigation of the conditions which determine the stability of irreversible hydrosols. Proc. R. Soc. Lond. 66, 110–125 (1900).

    Article  Google Scholar 

  36. Trefalt, G., Szilágyi, I. & Borkovec, M. Schulze–Hardy rule revisited. Colloid Polym. Sci. 298, 961–967 (2020).

    Article  CAS  Google Scholar 

  37. Gasparotto, P., Meißner, R. H. & Ceriotti, M. Recognizing local and global structural motifs at the atomic scale. J. Chem. Theory Comput. 14, 486–498 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

    Article  CAS  Google Scholar 

  39. Gasparotto, P., Bochicchio, D., Ceriotti, M. & Pavan, G. M. Identifying and tracking defects in dynamic supramolecular polymers. J. Phys. Chem. B 124, 589–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Mackay, A. L. A dense non-crystallographic packing of equal spheres. Acta Crystallogr. 15, 916–918 (1962).

    Article  CAS  Google Scholar 

  41. Garzoni, M., Cheval, N., Fahmi, A., Danani, A. & Pavan, G. M. Ion-selective controlled assembly of dendrimer-based functional nanofibers and their ionic-competitive disassembly. J. Am. Chem. Soc. 134, 3349–3357 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Astachov, V. et al. In situ functionalization of self-assembled dendrimer nanofibers with cadmium sulfide quantum dots through simple ionic-substitution. New J. Chem. 40, 6325–6331 (2016).

    Article  CAS  Google Scholar 

  43. Julin, S. et al. DNA origami directed 3D nanoparticle superlattice via electrostatic assembly. Nanoscale 11, 4546–4551 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. House, J. E. A TG study of the kinetics of decomposition of ammonium carbonate and ammonium bicarbonate. Thermochim. Acta 40, 225–233 (1980).

    Article  CAS  Google Scholar 

  45. Lofton, C. & Sigmund, W. Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 15, 1197–1208 (2005).

    Article  CAS  Google Scholar 

  46. Wang, D. et al. How and why nanoparticle’s curvature regulates the apparent pKa of the coating ligands. J. Am. Chem. Soc. 133, 2192–2197 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Boyer, P. D. Energy, life, and ATP (Nobel Lecture). Angew. Chem. Int. Ed. 37, 2297–2307 (1998).

    Article  CAS  Google Scholar 

  48. van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    Article  PubMed  Google Scholar 

  49. Singh, N., Formon, G. J. M., De Piccoli, S. & Hermans, T. M. Devising synthetic reaction cycles for dissipative non-equilibrium self-assembly. Adv. Mater. 32, 1906834 (2020).

    Article  CAS  Google Scholar 

  50. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotech. 13, 882–889 (2018).

    Article  CAS  Google Scholar 

  51. Wang, G. & Liu, S. Strategies to construct a chemical-fuel-driven self-assembly. ChemSystemsChem 2, e1900046 (2020).

    CAS  Google Scholar 

  52. Weißenfels, M., Gemen, J. & Klajn, R. Dissipative self-assembly: fueling with chemicals versus light. Chem 7, 23–37 (2021).

    Article  CAS  Google Scholar 

  53. Grötsch, R. K. et al. Dissipative self-assembly of photoluminescent silicon nanocrystals. Angew. Chem. Int. Ed. 57, 14608–14612 (2018).

    Article  CAS  Google Scholar 

  54. Grötsch, R. K. et al. Pathway dependence in the fuel-driven dissipative self-assembly of nanoparticles. J. Am. Chem. Soc. 141, 9872–9878 (2019).

    Article  PubMed  CAS  Google Scholar 

  55. van Ravensteijn, B. G. P., Hendriksen, W. E., Eelkema, R., van Esch, J. H. & Kegel, W. K. Fuel-mediated transient clustering of colloidal building blocks. J. Am. Chem. Soc. 139, 9763–9766 (2017).

    Article  PubMed  CAS  Google Scholar 

  56. Hsu, C. C. et al. Role of synaptic vesicle proton gradient and protein phosphorylation on ATP-mediated activation of membrane-associated brain glutamate decarboxylase. J. Biol. Chem. 274, 24366–24371 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. 49, 4825–4828 (2010).

    Article  CAS  Google Scholar 

  58. Leira-Iglesias, J., Sorrenti, A., Sato, A., Dunne, P. A. & Hermans, T. M. Supramolecular pathway selection of perylenediimides mediated by chemical fuels. Chem. Commun. 52, 9009–9012 (2016).

    Article  CAS  Google Scholar 

  59. Wang, G., Sun, J., An, L. & Liu, S. Fuel-driven dissipative self-assembly of a supra-amphiphile in batch reactor. Biomacromolecules 19, 2542–2548 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, Y. X. & Zeng, H. C. Surfactant-mediated self-assembly of Au nanoparticles and their related conversion to complex mesoporous structures. Langmuir 24, 3740–3746 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Klajn, R. et al. Bulk synthesis and surface patterning of nanoporous metals and alloys from supraspherical nanoparticle aggregates. Adv. Funct. Mater. 18, 2763–2769 (2008).

    Article  CAS  Google Scholar 

  62. Heo, K., Miesch, C., Emrick, T. & Hayward, R. C. Thermally reversible aggregation of gold nanoparticles in polymer nanocomposites through hydrogen bonding. Nano Lett. 13, 5297–5302 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Stolzenburg, P., Hämisch, B., Richter, S., Huber, K. & Garnweitner, G. Secondary particle formation during the nonaqueous synthesis of metal oxide nanocrystals. Langmuir 34, 12834–12844 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Reisler, E. & Egelman, E. H. Actin structure and function: what we still do not understand. J. Biol. Chem. 282, 36133–36137 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Pfaendtner, J., Lyman, E., Pollard, T. D. & Voth, G. A. Structure and dynamics of the actin filament. J. Mol. Biol. 396, 252–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Senesi, A. J. & Lee, B. Small-angle scattering of particle assemblies. J. Appl. Crystallogr. 48, 1172–1182 (2015).

    Article  CAS  Google Scholar 

  67. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  Google Scholar 

  69. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014).

    Article  CAS  Google Scholar 

  70. Houben, L. & Bar Sadan, M. Refinement procedure for the image alignment in high-resolution electron tomography. Ultramicroscopy 111, 1512–1520 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Houben, L., Weissman, H., Wolf, S. G. & Rybtchinski, B. A mechanism of ferritin crystallization revealed by cryo-STEM tomography. Nature 579, 540–543 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC) (grants 820008 to R.K. and 818776 to G.M.P.), the Minerva Foundation with funding from the Federal German Ministry for Education and Research and the Swiss National Science Foundation (grants 200021_175735 and IZLIZ2_183336 to G.M.P.). We acknowledge funding from the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement no. 812868. Z.C. acknowledges support from the Planning and Budgeting Committee of the Council for Higher Education, the Koshland Foundation and a McDonald–Leapman grant. The authors acknowledge the computational resources provided by the Swiss National Supercomputing Centre (CSCS). The support of the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging is gratefully acknowledged. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract no. DE-AC02-06CH11357. Extraordinary facility operations were supported in part by the DOE Office of Science through the National Virtual Biotechnology Laboratory, a consortium of DOE national laboratories focused on the response to COVID-19, with funding provided by the Coronavirus CARES Act.

Author information

Authors and Affiliations

Authors

Contributions

T.B. synthesized positively charged NPs, studied their interactions with oligoanions and developed a method to prepare crystalline NP aggregates. A.G. and C.P. performed the computational studies. J.G. developed the reverse system of negatively charged NPs and oligocations. B.L. performed and analysed the SAXS measurements. N.E. and L.H. performed cryo-STEM imaging and analysis. Z.C. contributed to the characterization of the NPs. R.K. supervised the project, coordinating with G.M.P., who supervised the computational studies. R.K. prepared the manuscript, with contributions from all the authors.

Corresponding author

Correspondence to Rafal Klajn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Tobias Kraus, Asaph Widmer-Cooper and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Dependence of the titration behavior on nanoparticle size.

Differently sized TMA-functionalized Au NPs (4.8 nm, 8.8 nm, and 13.1 nm) at the same overall concentration of TMA in solution were titrated with the same solution of EDTA3– (the NPs were prepared analogously to those described in the Methods section). a, Left: Change in the position of Au·TMA’s SPR peak as a function of amount of EDTA3– added. In all cases, the amount of NP-adsorbed TMA was 20 nmol. The dashed red line denotes the point of electroneutrality (6.7 nmol of triply charged EDTA). Right: Relative dimensions of Au·TMA used in titration experiments. b, Normalized position of Au·TMA’s SPR peak as a function of amount of EDTA3– added (replotted from a). The normalized data show that the titration profiles are nearly the same irrespective of the NP size, indicating that the interparticle interactions are governed predominantly by electrostatics. The dashed red line denotes the point of electroneutrality (6.7 nmol of triply charged EDTA).

Extended Data Fig. 2 Representative SEM images of colloidal crystals co-assembled from TMA-functionalized Au NPs and various multiply charged anions.

The following anions were used: ac, EDTA3–; dj, citrate3–; k, l, pyrophosphate4–; ms, triphosphate5–; t, u, trimetaphosphate3–; v, w, hexametaphosphate6–; xz, ATP4–. The size of the NPs was 4.7 nm (panels n–r), 7.4 nm (panels a–f, j–m, and s–z), and 11.4 nm (panels g–i). In all cases, the counterion was Na+.

Extended Data Fig. 3 Nanoparticle packing on the faces of colloidal crystals.

SEM images of crystals co-assembled from TMA-functionalized 4.7 nm Au NPs and ATP. The magnified images in (b) and (e) show the hexagonal packing of NPs characteristic of the (111) facet of the face-centered cubic (fcc) structure. The magnified image in (g) shows the cubic packing of NPs characteristic of the (100) facet of the fcc structure.

Extended Data Fig. 4 SEM images of colloidal crystals co-assembled from negatively charged NPs and an organic trication.

The crystals were prepared using MUS-functionalized 4.7 nm Au NPs and triply charged cations, OMA3+, as described in the Methods section.

Extended Data Fig. 5 Cryo-STEM images of aggregates of TMA-functionalized Au NPs and P3O105− or ATP.

a, Contrast-inverted bright-field cryo-STEM images of Au·TMA/P3O105− aggregates. Reconstruction and analysis of the aggregates denoted by circles are shown in Extended Data Fig. 6. b, Contrast-inverted bright-field cryo-STEM image of Au·TMA/ATP aggregates. Reconstruction and analysis of the aggregates denoted by circles are shown in Extended Data Fig. 7. All panels show single images at zero tilt, part of a tilt series spanning the tilt range of 60°.

Extended Data Fig. 6 Reconstruction and analysis of Au·TMA/P3O105− aggregates.

Labels a–d correspond to the locations indicated with the same labels in Extended Data Fig. 5. Left panel: ‘Atomistic’ models of the aggregates obtained after 3D reconstruction and particle coordinate refinement. Middle panel: Numbers of nearest neighbors in the first coordination shell in a color-coded representation for each NP. Average number of nearest neighbors = 6.4 (±0.8) (measured on ten different aggregates). Right panel: Pair correlation functions; the nearest-neighbor distance, Δ = 8.27 (±0.03) nm.

Extended Data Fig. 7 Reconstruction and analysis of Au·TMA/ATP aggregates.

Labels ad correspond to the locations indicated with the same labels in Extended Data Fig. 5. First panel: Contrast-inverted bright-field cryo-STEM images of individual Au·TMA/ATP aggregates. Second panel: ‘Atomistic’ models of the aggregates obtained after 3D reconstruction and particle coordinate refinement. Third panel: Numbers of nearest neighbors in the first coordination shell in a color-coded representation for each NP. Average number of nearest neighbors = 7.4 (±0.5) (measured on five different aggregates). Fourth panel: Pair correlation functions; the nearest-neighbor distance, Δ = 8.08 (±0.07) nm.

Supplementary information

Supplementary Information

Detailed description of experimental and computational procedures, Supplementary Figs. 1–40 and references.

Supplementary Video 1

CG-MD simulation of citrate-mediated self-assembly of two TMA-decorated Au NPs.

Supplementary Video 2

CG-MD simulation of citrate-mediated self-assembly of four TMA-decorated Au NPs.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1d,e.

Source Data Fig. 2

Statistical source data for Fig. 2b,d.

Source Data Fig. 4

Statistical source data for Fig. 4j,l.

Source Data Fig. 5

Statistical source data for Fig. 5c,d.

Source Data Fig. 6

Statistical source data for Fig. 6c,d,f–h,k,l.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, T., Gardin, A., Gemen, J. et al. Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures. Nat. Chem. 13, 940–949 (2021). https://doi.org/10.1038/s41557-021-00752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-021-00752-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing