Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Snowmelt risk telecouplings for irrigated agriculture

Abstract

Climate change is altering the timing and magnitude of snowmelt, which may either directly or indirectly via global trade affect agriculture and livelihoods dependent on snowmelt. Here, we integrate subannual irrigation and snowmelt dynamics and a model of international trade to assess the global redistribution of snowmelt dependencies and risks under climate change. We estimate that 16% of snowmelt used for irrigation is for agricultural products traded globally, of which over 70% is from five countries. Globally, we observe a prodigious snowmelt dependence and risk diffusion, with particularly evident importing of products at risk in western Europe. In Germany and the UK, local fraction of surface-water-irrigated agriculture supply exposed to snowmelt risks could increase from negligible to 16% and 10%, respectively, under a 2 °C warming. Our results reveal the trade-exposure of agricultural supplies, highlighting regions and crops whose consumption may be vulnerable to changing snowmelt even if their domestic production is not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GTAP region-level surface irrigation water demand met by different water sources (1985–2015).
Fig. 2: Source-specific irrigation surface-water transfer embodied in international trade.
Fig. 3: Global production-based and consumption-based hotspots of snowmelt-dependence for irrigated agriculture.
Fig. 4: Virtual transfer of agricultural products at risk embodied in international trade.
Fig. 5: Virtual transfer of agricultural production at risk detailed across trading partners.
Fig. 6: Crop-specific production at risk for top importers and exporters.

Similar content being viewed by others

Data availability

GTAP is available from: https://www.gtap.agecon.purdue.edu/. GCWM outputs are available from: https://www.uni-frankfurt.de/45217988/Global_Crop_Water_Model__GCWM. TerraClimate data are available from: http://www.climatologylab.org/terraclimate.html. FAO data are available from: https://www.fao.org/faostat/en/#data. All other data that support the findings of this study are available in the main text or the supplementary materials. Source data are provided with this paper.

Code availability

Computer code or algorithm used to generate results that are reported in the paper and central to the main claims are available from figshare79.

References

  1. Waliser, D. et al. Simulating cold season snowpack: impacts of snow albedo and multi-layer snow physics. Clim. Change 116, 425–425 (2013).

    Article  Google Scholar 

  2. Li, D. Y., Wrzesien, M. L., Durand, M., Adam, J. & Lettenmaier, D. P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 44, 6163–6172 (2017).

    Article  Google Scholar 

  3. Huning, L. S. & AghaKouchak, A. Mountain snowpack response to different levels of warming. Proc. Natl Acad. Sci. USA 115, 10932–10937 (2018).

    Article  CAS  Google Scholar 

  4. Stewart, I. T., Cayan, D. R. & Dettinger, M. D. Changes in snowmelt runoff timing in western North America under a ‘business as usual’ climate change scenario. Clim. Change 62, 217–232 (2004).

    Article  Google Scholar 

  5. Chaulagain, N. P. https://doi.org/10.1007/978-3-319-13743-8_15. in Dynamics of Climate Change and Water Resources of Northwestern Himalaya (eds Joshi, R. et al.) 191–199 (Springer, 2015).

  6. Stewart, I. T., Cayan, D. R. & Dettinger, M. D. Changes toward earlier streamflow timing across western North America. J. Clim. 18, 1136–1155 (2005).

    Article  Google Scholar 

  7. Easterling, W. E. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 273–313 (Cambridge Univ. Press, 2007).

  8. Vano, J. A. et al. Climate change impacts on water management and irrigated agriculture in the Yakima River Basin, Washington, USA. Clim. Change 102, 287–317 (2010).

    Article  Google Scholar 

  9. Vicuña, S., McPhee, J. & Garreaud, R. D. Agriculture vulnerability to climate change in a snowmelt-driven basin in semiarid Chile. J. Water Resour. Plan. Manag. 138, 431–441 (2012).

    Article  Google Scholar 

  10. Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917 (2020).

    Article  Google Scholar 

  11. Caretta, M. A. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 551–712 (Cambridge Univ. Press, 2022).

  12. Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change 4, 587–592 (2014).

    Article  Google Scholar 

  13. Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).

    Article  Google Scholar 

  14. Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y. & Diffenbaugh, N. S. The potential for snow to supply human water demand in the present and future. Environ. Res. Lett. 10, 114016 (2015).

    Article  Google Scholar 

  15. Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Article  CAS  Google Scholar 

  16. Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).

    Article  Google Scholar 

  17. Mekonnen, M. M. & Hoekstra, A. Y. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 14, 1259–1276 (2010).

    Article  Google Scholar 

  18. Chapagain, A. K., Hoekstra, A. Y. & Savenije, H. H. G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 10, 455–468 (2006).

    Article  Google Scholar 

  19. Liu, W. F. et al. Savings and losses of global water resources in food-related virtual water trade. WIREs Water 6, e1320 (2019).

    Article  Google Scholar 

  20. Hoekstra, A. Y. & Hung, P. Q. Globalisation of water resources: international virtual water flows in relation to crop trade. Glob. Environ. Change 15, 45–56 (2005).

    Article  Google Scholar 

  21. Konar, M., Dalin, C., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Temporal dynamics of blue and green virtual water trade networks. Water Resour. Res. 48, W07509 (2012).

    Article  Google Scholar 

  22. Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 553, 366–366 (2018).

    Article  CAS  Google Scholar 

  23. Liu, X. et al. Can virtual water trade save water resources? Water Res. 163, 114848 (2019).

    Article  CAS  Google Scholar 

  24. Pfister, S., Bayer, P., Koehler, A. & Hellweg, S. Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ. Sci. Technol. 45, 5761–5768 (2011).

    Article  CAS  Google Scholar 

  25. Lenzen, M. et al. International trade of scarce water. Ecol. Econ. 94, 78–85 (2013).

    Article  Google Scholar 

  26. O’Bannon, C., Carr, J., Seekell, D. A. & D’Odorico, P. Globalization of agricultural pollution due to international trade. Hydrol. Earth Syst. Sci. 18, 503–510 (2014).

    Article  Google Scholar 

  27. Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    Article  Google Scholar 

  28. Rosa, L., Chiarelli, D. D., Tu, C. Y., Rulli, M. C. & D’Odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 14, 114001 (2019).

    Article  CAS  Google Scholar 

  29. Liu, J. G., Yang, W. & Li, S. X. Framing ecosystem services in the telecoupled Anthropocene. Front. Ecol. Environ. 14, 27–36 (2016).

    Article  Google Scholar 

  30. Döll, P. & Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 38, 8-1–8-10 (2002).

    Article  Google Scholar 

  31. Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    Article  Google Scholar 

  32. Qin, Y. et al. Flexibility and intensity of global water use. Nat. Sustain. 2, 515–523 (2019).

    Article  Google Scholar 

  33. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Article  Google Scholar 

  34. Peters, G. P., Andrew, R. & Lennox, J. Constructing an environmentally-extended multi-regional input-output table using the GTAP database. Econ. Syst. Res. 23, 131–152 (2011).

    Article  Google Scholar 

  35. Andrew, R. M. & Peters, G. P. A. A multi-region input–output table based on the Global Trade Analysis Project Database (GTAP-MRIO). Econ. Syst. Res. 25, 99–121 (2013).

    Article  Google Scholar 

  36. Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016).

    Article  Google Scholar 

  37. Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environ. Res. Lett. 8, 024030 (2013).

    Article  Google Scholar 

  38. MacDonald, G. K., D’Odorico, P. & Seekell, D. A. Pathways to sustainable intensification through crop water management. Environ. Res. Lett. 11, 091001 (2016).

    Article  Google Scholar 

  39. McDonald, R. I. et al. Water on an urban planet: urbanization and the reach of urban water infrastructure. Glob. Environ. Change 27, 96–105 (2014).

    Article  Google Scholar 

  40. Zhao, X. et al. Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl Acad. Sci. USA 112, 1031–1035 (2015).

    Article  CAS  Google Scholar 

  41. Kahil, M. T., Dinar, A. & Albiac, J. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. J. Hydrol. 522, 95–109 (2015).

    Article  Google Scholar 

  42. Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

    Article  CAS  Google Scholar 

  43. Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    Article  CAS  Google Scholar 

  44. Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    Article  CAS  Google Scholar 

  45. Bliss, A., Hock, R. & Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth 119, 717–730 (2014).

    Article  Google Scholar 

  46. Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article  Google Scholar 

  47. Swann, A. L. S. Plants and drought in a changing climate. Curr. Clim. Change Rep. 4, 192–201 (2018).

    Article  Google Scholar 

  48. Wada, Y. et al. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016).

    Article  Google Scholar 

  49. Sustainable Development Goals—Food Security and the Right to Food (FAO, 2015); https://www.fao.org/sustainable-development-goals/background/fao-and-the-post-2015-development-agenda/food-security-and-the-right-to-food/en/

  50. The State of Food Security and Nutrition in the World (FAO, 2020); http://www.fao.org/publications/sofi/2020/en/

  51. World Countries 2008 [Shapefile] (ESRI, 2008); https://maps.princeton.edu/catalog/princeton-3r074w418

  52. Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19, 241–251 (2013).

    Article  Google Scholar 

  53. Miller, O. L. et al. How will baseflow respond to climate change in the upper colorado river basin? Geophys. Res. Lett. 48, e2021GL095085 (2021).

    Article  Google Scholar 

  54. Lundquist, J., Hughes, M., Gutmann, E. & Kapnick, S. Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull. Am. Meteorol. Soc. 100, 2473–2490 (2019).

    Article  Google Scholar 

  55. Vörösmarty, C. J., Fekete, B. M., Meybeck, M. & Lammers, R. B. Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution. J. Hydrol. 237, 17–39 (2000).

    Article  Google Scholar 

  56. Meybeck, M., Dürr, H. H. & Vörösmarty, C. J. Global coastal segmentation and its river catchment contributors: a new look at land–ocean linkage. Glob. Biogeochem. Cycles 20, GB1S90 (2006).

    Article  Google Scholar 

  57. Allen, G. H., David, C. H., Andreadis, K. M., Hossain, F. & Famiglietti, J. S. Global estimates of river flow wave travel times and implications for low-latency satellite data. Geophys. Res. Lett. 45, 7551–7560 (2018).

    Article  Google Scholar 

  58. Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).

    Article  Google Scholar 

  59. Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).

    Article  Google Scholar 

  60. Siebert, S., Henrich, V., Frenken, K. & Burke, J. Update of the Digital Global Map of Irrigation Areas to Version 5 (FAO, 2013); https://www.fao.org/3/I9261EN/i9261en.pdf

  61. Siebert, S., Döll, P., Feick, S., Hoogeveen, J. & Frenken, K. Global Map of Irrigation Areas Version 4.0.1 [CD-ROM] (FAO, 2007).

  62. Siebert, S. & Döll, P. The Global Crop Water Model (GCWM): Documentation and First Results for Irrigated Crops (Institute of Physical Geography, 2008).

  63. Food and Agriculture Data (FAO, 2018); http://www.fao.org/faostat/en/#data

  64. Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).

    Article  CAS  Google Scholar 

  65. Greve, P. et al. Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustain. 1, 486–494 (2018).

    Article  Google Scholar 

  66. Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).

    Article  CAS  Google Scholar 

  67. Baldassarre, G. D. et al. Water shortages worsened by reservoir effects. Nat. Sustain. 1, 617–622 (2018).

    Article  Google Scholar 

  68. Sneed, M., Brandt, J. T. & Solt, M. Land Subsidence along the Delta-Mendota Canal in the Northern Part of the San Joaquin Valley, California, 2003–2010 (USGS, 2013); http://pubs.usgs.gov/sir/2013/5142/

  69. Hong, C. P. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554 (2021).

    Article  CAS  Google Scholar 

  70. Technical Conversion Factors for Agricultural Commodities (FAO, 2015); http://www.fao.org/fileadmintemplates/ess/documents/methodology/tcf.pdf

  71. Feng, K. S. & Hubacek, K. in Handbook of Research Methods and Applications in Environmental Studies (ed. Ruth, M.) Ch. 10 (Edward Elgar Publishing, 2015).

  72. Feng, K. S., Chapagain, A., Shu, S., Pfister, S. & Hubacek, K. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Econ. Syst. Res. 23, 371–385 (2011).

    Article  Google Scholar 

  73. Chen, Z. M. & Chen, G. Q. Virtual water accounting for the globalized world economy: national water footprint and international virtual water trade. Ecol. Indic. 28, 142–149 (2013).

    Article  Google Scholar 

  74. Davis, S. J., Peters, G. P. & Caldeira, K. The supply chain of CO2 emissions. Proc. Natl Acad. Sci. USA 108, 18554–18559 (2011).

  75. Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).

    Article  CAS  Google Scholar 

  76. Hubacek, K. & Feng, K. S. Comparing apples and oranges: some confusion about using and interpreting physical trade matrices versus multi-regional input-output analysis. Land Use Policy 50, 194–201 (2016).

    Article  Google Scholar 

  77. Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).

    Article  Google Scholar 

  78. Henders, S., Persson, U. M. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).

    Article  Google Scholar 

  79. Qin, Y. Snow trade 2022. figshare https://doi.org/10.6084/m9.figshare.21076117 (2022).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China grant no. 42277482 to Y.Q., the Foundation for Food and Agriculture Research through a New Innovator Award to N.D.M., the US National Science Foundation INFEWS grant EAR 1639318 to S.J.D., the German Federal Ministry of Education and Research (BMBF; grant no. 02WGR1642A) through its Global Resource Water (GRoW) funding initiative and the German Research Foundation SFB 1502/1-2022-Project no. 450058266 to S.S., the University of California, Division of Agriculture and Natural Resources California Institute for Water Resources and US Geological Survey grant G21AP10611-00 and a California State University Water Resources and Policy Initiatives grant to L.S.H., the Scientific Research Start-up Funds (QD2021030C) from Tsinghua Shenzhen International Graduate School to C.H., the USDA-NIFA award (2021-69012-35916) to J.T.A. and National Natural Science Foundation of China grant no. 71904097 to H.Z. We acknowledge helpful discussions with D. Li and P. Lin.

Author information

Authors and Affiliations

Authors

Contributions

Y.Q., N.D.M. and S.J.D. designed the study. Y.Q. performed the analyses, with additional support from C.H., H.Z., S.S., J.T.A., L.S.H., L.L.S., S.P. and S.Y.L. on datasets and analytical approaches. Y.Q., N.D.M., S.J.D., S.S., T.Z. and D.M. led the writing with input from all coauthors.

Corresponding authors

Correspondence to Yue Qin or Nathaniel D. Mueller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Ian Holman, Wenfeng Liu, Landon Marston and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Source-specific water demand for major countries under a 2 °C warming scenario.

GTAP region-level surface-water demand met by different water sources under the +2°C warming scenario. Monthly runoff from snowmelt runoff, rainfall runoff, and alternative water demand for (a) China, (b) U.S., (c) Pakistan, and (d) India are shown in stacked bars inside the box, where the shaded red, blue and grey bars denote the corresponding contributions from rainfall, snowmelt, and alternative surface-water sources (that is, reservoirs storage and interbasin transfer), respectively.

Source data

Extended Data Fig. 2 Source-specific water demand for major countries under a 4 °C warming scenario.

GTAP region-level surface-water demand met by different water sources under the +4°C warming scenario. Monthly runoff from snowmelt runoff, rainfall runoff, and alternative water demand for (a) China, (b) U.S., (c) Pakistan, and (d) India are shown in stacked bars inside the box, where the shaded red, blue and grey bars denote the corresponding contributions from rainfall, snowmelt, and alternative surface-water sources (that is, reservoirs storage and interbasin transfer), respectively.

Source data

Extended Data Fig. 3 Virtual transfer of agricultural production at risk under the 2 °C warming scenario.

GTAP-level agricultural production at risk under the 2°C warming scenario and virtual transfer throughout the whole global supply chains. GTAP-level (a) surface-water-irrigated agricultural products exposed to snowmelt risks under production-based accounting, (b) imports of surface-water-irrigated agricultural products at risk embodied in trade, (c) exports of surface-water-irrigated agricultural products at risk embodied in trade, and (d) surface-water-irrigated agricultural products exposed to snowmelt risks under consumption-based accounting.

Source data

Extended Data Fig. 4 Virtual transfer of agricultural production at risk under the 4 °C warming scenario.

GTAP-level agricultural production at risk under the 4°C warming scenario and virtual transfer throughout the whole global supply chains. GTAP-level (a) surface-water-irrigated agricultural products exposed to snowmelt risks under production-based accounting, (b) imports of surface-water-irrigated agricultural products at risk embodied in trade, (c) exports of surface-water-irrigated agricultural products at risk embodied in trade, and (d) surface-water-irrigated agricultural products exposed to snowmelt risks under consumption-based accounting.

Source data

Supplementary information

Supplementary Information

Supplementary notes, Figs. 1–28 and Tables 1 and 2.

Source data

Source Data Fig. 1

Numerical data used to generate graphs.

Source Data Fig. 2

Numerical data used to generate graphs.

Source Data Fig. 3

Numerical data used to generate graphs.

Source Data Fig. 4

Numerical data used to generate graphs.

Source Data Fig. 5

Numerical data used to generate graphs.

Source Data Fig. 6

Numerical data used to generate graphs.

Source Data Extended Data Fig. 1

Numerical data used to generate graphs.

Source Data Extended Data Fig. 2

Numerical data used to generate graphs.

Source Data Extended Data Fig. 3

Numerical data used to generate graphs.

Source Data Extended Data Fig. 4

Numerical data used to generate graphs.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Hong, C., Zhao, H. et al. Snowmelt risk telecouplings for irrigated agriculture. Nat. Clim. Chang. 12, 1007–1015 (2022). https://doi.org/10.1038/s41558-022-01509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-022-01509-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene