Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large reductions in tropical bird abundance attributable to heat extreme intensification

Abstract

Although species exhibit widespread sensitivity to environmental conditions, the extent to which human-driven climate change may have already altered their abundance remains unclear. Here we quantify the impact of climate change on bird populations from across the world by combining models of their response to environmental conditions with a climate attribution framework. We identify a dominant role of intensified heat extremes compared to changes in average temperature and precipitation. Increased interannual exposure to hot extremes reduces annual abundance growth rates most strongly in lower-latitude tropical regions, with effects robust when controlling for changing human industrial pressure and other long-term drivers. Compared to a counterfactual without human-driven climate change, the historical intensification of heat extremes has caused a 25–38% reduction in the level of abundance of tropical birds, which has accumulated from 1950 to 2020. Across observed tropical bird populations, impacts of climate change have typically been larger than direct human pressure, the opposite across sub-tropical regions. Overall, these results showcase how human-driven climate change is already reshaping biodiversity globally and may explain reported declines of birds in undisturbed tropical habitats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The exposure of terrestrial bird populations to human pressure and intensifying high temperature extremes.
Fig. 2: Heterogenous and persistent impacts of hot temperature extremes on the interannual growth rate of terrestrial bird population abundance.
Fig. 3: Long-term changes in the abundance levels of terrestrial bird populations attributable to climate change and human pressure.

Similar content being viewed by others

Data availability

Data on the abundance of terrestrial birds from the Living Planet database are publicly available via the Living Planet Index at https://www.livingplanetindex.org/. Data on historical climate conditions from ERA-5 are publicly available via the European Centre for Medium-Range Weather Forecasts at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. AVONET data on morphological, ecological and geographic features of bird species are publicly available via Open Traits Network at https://opentraits.org/datasets/avonet.html. All processed data are publicly available via Zenodo at https://doi.org/10.5281/zenodo.13695554 (ref. 69). Source data are provided with this paper.

Code availability

All code necessary for reproduction of the results are publicly available via Zenodo at https://doi.org/10.5281/zenodo.13695554 (ref. 69).

References

  1. Brondízio, E. S., Settele, J., Diaz, S. & Ngo, H. T. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019); https://files.ipbes.net/ipbes-web-prod-public-files/inline/files/ipbes_global_assessment_report_summary_for_policymakers.pdf

  2. Watson, J. E., Ellis, E. C., Pillay, R., Williams, B. A. & Venter, O. Mapping industrial influences on Earth’s ecology. Annu. Rev. Environ. Resour. 48, 289–317 (2023).

    Article  Google Scholar 

  3. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeebe, R. E., Ridgwell, A. & Zachos, J. C. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosci. 9, 325–329 (2016).

    Article  CAS  Google Scholar 

  6. Smith, S. J., Edmonds, J., Hartin, C. A., Mundra, A. & Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Chang. 5, 333–336 (2015).

    Article  Google Scholar 

  7. Song, H. et al. Thresholds of temperature change for mass extinctions. Nat. Commun. 12, 4694 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perkins-Kirkpatrick, S. & Lewis, S. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robinson, A., Lehmann, J., Barriopedro, D., Rahmstorf, S. & Coumou, D. Increasing heat and rainfall extremes now far outside the historical climate. npj Clim. Atmos. Sci. 4, 45 (2021).

    Article  Google Scholar 

  10. Dong, S. et al. Attribution of extreme precipitation with updated observations and CMIP6 simulations. J. Clim. 34, 871–881 (2021).

    Article  Google Scholar 

  11. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Brito-Morales, I. et al. Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nat. Clim. Chang. 12, 402–407 (2022).

    Article  Google Scholar 

  13. Buenafe, K. C. V. et al. A metric-based framework for climate-smart conservation planning. Ecol. Appl. 33, e2852 (2023).

    Article  PubMed  Google Scholar 

  14. Ledger, S. E. et al. Past, present, and future of the Living Planet Index. npj Biodivers. 2, 12 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Amano, T. et al. Responses of global waterbird populations to climate change vary with latitude. Nat. Clim. Chang. 10, 959–964 (2020).

    Article  Google Scholar 

  17. Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 0067 (2017).

    Article  Google Scholar 

  18. Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Chang. 3, 1055–1061 (2013).

    Article  Google Scholar 

  19. Murali, G., Iwamura, T., Meiri, S. & Roll, U. Future temperature extremes threaten land vertebrates. Nature 615, 461–467 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Maron, M., McAlpine, C. A., Watson, J. E., Maxwell, S. & Barnard, P. Climate-induced resource bottlenecks exacerbate species vulnerability: a review. Divers. Distrib. 21, 731–743 (2015).

    Article  Google Scholar 

  21. Maxwell, S. L. et al. Conservation implications of ecological responses to extreme weather and climate events. Divers. Distrib. 25, 613–625 (2019).

    Article  Google Scholar 

  22. McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).

    Article  PubMed  Google Scholar 

  23. Gardner, J. L., Clayton, M., Allen, R., Stein, J. & Bonnet, T. The effects of temperature extremes on survival in two semi-arid Australian bird communities over three decades, with predictions to 2104. Glob. Ecol. Biogeogr. 31, 2498–2509 (2022).

    Article  Google Scholar 

  24. Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schou, M. F. et al. Extreme temperatures compromise male and female fertility in a large desert bird. Nat. Commun. 12, 666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wiley, E. M. & Ridley, A. R. The effects of temperature on offspring provisioning in a cooperative breeder. Anim. Behav. 117, 187–195 (2016).

    Article  Google Scholar 

  27. Cunningham, S. J., Martin, R. O., Hojem, C. L. & Hockey, P. A. Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming arid savanna: a study of common fiscals. PLoS ONE 8, e74613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bourne, A. R., Cunningham, S. J., Spottiswoode, C. N. & Ridley, A. R. High temperatures drive offspring mortality in a cooperatively breeding bird. Proc. R. Soc. B 287, 20201140 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Halupka, L. et al. The effect of climate change on avian offspring production: a global meta-analysis. Proc. Natl Acad. Sci. USA 120, e2208389120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding, C., Newbold, T. & Ameca, E. I. Assessing the global vulnerability of dryland birds to heatwaves. Glob. Chang. Biol. 30, e17136 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, L. & Khanna, M. Heterogeneous and long-term effects of a changing climate on bird biodiversity. Glob. Environ. Chang. Adv. 2, 100008 (2024).

    Article  Google Scholar 

  32. Hu, T., Sun, Y., Zhang, X., Min, S.-K. & Kim, Y.-H. Human influence on frequency of temperature extremes. Environ. Res. Lett. 15, 064014 (2020).

    Article  Google Scholar 

  33. Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016).

    Article  PubMed  Google Scholar 

  34. Montràs-Janer, T. et al. Anthropogenic climate and land-use change drive short-and long-term biodiversity shifts across taxa. Nat. Ecol. Evol. 8, 739–751 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mengel, M., Treu, S., Lange, S. & Frieler, K. ATTRICI v1. 1–counterfactual climate for impact attribution. Geosci. Model Dev. 14, 5269–5284 (2021).

    Article  Google Scholar 

  37. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  38. Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Article  Google Scholar 

  39. Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Harvey, J. A., Heinen, R., Gols, R. & Thakur, M. P. Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob. Chang. Biol. 26, 6685–6701 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Filazzola, A., Matter, S. F. & MacIvor, J. S. The direct and indirect effects of extreme climate events on insects. Sci. Total Environ. 769, 145161 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).

    Article  PubMed  Google Scholar 

  45. Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).

    Article  PubMed  Google Scholar 

  46. Pollock, H. S. et al. Long-term monitoring reveals widespread and severe declines of understory birds in a protected Neotropical forest. Proc. Natl Acad. Sci. USA 119, e2108731119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blake, J. G. & Loiselle, B. A. Sharp declines in observation and capture rates of Amazon birds in absence of human disturbance. Glob. Ecol. Conserv. 51, e02902 (2024).

    Google Scholar 

  48. Curtis, J. R., Robinson, W. D., Rompré, G., Moore, R. P. & McCune, B. Erosion of tropical bird diversity over a century is influenced by abundance, diet and subtle climatic tolerances. Sci. Rep. 11, 10045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Auliz-Ortiz, D. M. et al. Underlying and proximate drivers of biodiversity changes in Mesoamerican biosphere reserves. Proc. Natl Acad. Sci. USA 121, e2305944121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lawlor, J. A. et al. Mechanisms, detection and impacts of species redistributions under climate change. Nat. Rev. Earth Environ. 5, 351–368 (2024).

    Article  Google Scholar 

  51. Amano, T. et al. Tapping into non-English-language science for the conservation of global biodiversity. PLoS Biol. 19, e3001296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dobson, A., Rowe, Z., Berger, J., Wholey, P. & Caro, T. Biodiversity loss due to more than climate change. Science 374, 699–700 (2021).

    Article  PubMed  Google Scholar 

  53. Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Laurance, W. F. Rapid land-use change and its impacts on tropical biodiversity. in Ecosystems and Land Use Change Volume 153 (eds Defries, R. S. et al.) 189–199 (American Geophysical Union, 2004).

  56. Martin, T. G. & Watson, J. E. Intact ecosystems provide best defence against climate change. Nat. Clim. Chang. 6, 122–124 (2016).

    Article  Google Scholar 

  57. Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    Article  PubMed  Google Scholar 

  58. Auffhammer, M., Hsiang, S. M., Schlenker, W. & Sobel, A. Using weather data and climate model output in economic analyses of climate change. Rev. Environ. Econ. Policy 7, 181–198 (2020).

    Article  Google Scholar 

  59. Abadie, A., Athey, S., Imbens, G. W. & Wooldridge, J. M. When should you adjust standard errors for clustering? Q. J. Econ. 138, 1–35 (2023).

    Article  Google Scholar 

  60. Conley, T. G. GMM estimation with cross sectional dependence. J. Econ. 92, 1–45 (1999).

    Article  Google Scholar 

  61. Driscoll, J. C. & Kraay, A. C. Consistent covariance matrix estimation with spatially dependent panel data. Rev. Econ. Stat. 80, 549–560 (1998).

    Article  Google Scholar 

  62. Hunter, J., Franklin, S., Luxton, S. & Loidi, J. Terrestrial biomes: a conceptual review. Veg. Classif. Surv. 2, 73–85 (2021).

    Google Scholar 

  63. Callahan, C. W. & Mankin, J. S. Globally unequal effect of extreme heat on economic growth. Sci. Adv. 8, eadd3726 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Diffenbaugh, N. S. & Burke, M. Global warming has increased global economic inequality. Proc. Natl Acad. Sci. USA 116, 9808–9813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park, C. Y. et al. Attributing human mortality from fire PM2.5 to climate change.Nat. Clim. Chang. 14, 1193–1200 (2024).

    Article  Google Scholar 

  66. Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. chang. 11, 492–500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dimitrova, A. et al. Temperature-related neonatal deaths attributable to climate change in 29 low-and middle-income countries. Nat. Commun. 15, 5504 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arias, P. et al. Technical summary. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group14 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (IPCC, 2021); https://doi.org/10.1017/9781009157896.002

  69. Kotz, M. Data and code for: “Large reductions in tropical bird abundance attributable to heat extreme intensification”. Zenodo https://doi.org/10.5281/zenodo.13695554 (2025).

Download references

Acknowledgements

We thank attendees of the seminar at the Centre for Biodiversity and Conservation Science at the University of Queensland for helpful comments on an early version of the paper, as well as the Centre for Biodiversity and Conservation Science for hosting an Early Career writing retreat during which much of this work was undertaken. M.K. acknowledges support from the European Union’s Horizon 2020 research and innovation programme via a Marie Skłodowska-Curie postdoctoral fellowship, as well as the German Academic Exchange Service for funding for a research stay at the University of Queensland.

Author information

Authors and Affiliations

Authors

Contributions

M.K. proposed the study and designed the analysis with input on modelling design from T.A. and J.E.M.W. M.K. conducted the analysis and produced the figures. All authors contributed to the interpretation and presentation of the results. M.K. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Maximilian Kotz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Peter Stott and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Long-term trends in population abundance growth rates.

Panels show the distribution of long-term trends in population growth rates, obtained by linear regression of the difference in logarithmic abundance levels between years for each population for all available years of data. The distributions are shown for all populations and across aggregated biomes. One can see that these population distributions are centred on zero with balanced numbers of populations exhibiting positive and negative trends in abundance growth rates.

Source data

Extended Data Fig. 2 Long-term trends in population abundance levels.

Panels show the distribution of long-term trends in population growth rates, obtained by linear regression of the logarithmic abundance levels for each population for all available years of data. The distributions are shown for all populations and across aggregated biomes. The distributions are mainly centred around zero, with the exception of the Tropical and Mediterranean realms which show a slight skew towards negative trends in abundance levels.

Source data

Extended Data Fig. 3 The distribution of attributable climate impacts across populations.

The distribution of attributable impacts from climate change (including both heat and precipitation extremes) across different populations within each land-tercile (0–21 degrees North or South, 21–43 degrees North or South, and 43–90 degrees North or South). As in Fig. 3, changes in the abundance level attributable to climate change are the changes between the observed populations and those in a counterfactual scenario without climate change.

Source data

Extended Data Table 1 Robustness of results when accounting for spatial autocorrelation
Extended Data Table 2 Robustness of results when accounting for phylogenetic autocorrelation

Supplementary information

Supplementary Information

Supplementary Tables 1–8, Figs. 1–14 and Discussion.

Reporting Summary

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotz, M., Amano, T. & Watson, J.E.M. Large reductions in tropical bird abundance attributable to heat extreme intensification. Nat Ecol Evol 9, 1897–1909 (2025). https://doi.org/10.1038/s41559-025-02811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02811-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing