Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gamma-Mobile-Trio systems are mobile elements rich in bacterial defensive and offensive tools

Abstract

The evolutionary arms race between bacteria and phages led to the emergence of bacterial immune systems whose diversity and dynamics remain poorly understood. Here we use comparative genomics to describe a widespread genetic element, defined by the presence of the Gamma-Mobile-Trio (GMT) proteins, that serves as a reservoir of offensive and defensive tools. We demonstrate, using Vibrio parahaemolyticus as a model, that GMT-containing genomic islands are active mobile elements. Furthermore, we show that GMT islands’ cargoes contain various anti-phage defence systems, antibacterial type VI secretion system (T6SS) effectors and antibiotic-resistance genes. We reveal four anti-phage defence systems encoded within GMT islands and further characterize one system, GAPS1, showing it is triggered by a phage capsid protein to induce cell dormancy. Our findings underscore the need to broaden the concept of ‘defence islands’ to include defensive and offensive tools, as both share the same mobile elements for dissemination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GMT proteins define a class of widespread, mobile genomic islands.
Fig. 2: VPaI-6 can be horizontally shared via a conjugatable plasmid.
Fig. 3: GMT islands contain a diverse cargo of offensive and defensive tools.
Fig. 4: Four anti-phage defence systems identified within GMT islands.
Fig. 5: GAPS1 induces cell dormancy upon activation by a phage capsid protein.
Fig. 6: E. coli GAPS1 homologues protect against various coliphages.

Similar content being viewed by others

Data availability

All data related to the manuscript are available in the main text, the supplementary material and the source data files. Source data for the figures are provided with this paper.

References

  1. Pukatzki, S. et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl Acad. Sci. USA 103, 1528–1533 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jana, B. & Salomon, D. Type VI secretion system: a modular toolkit for bacterial dominance. Future Microbiol. 14, 1451–1463 (2019).

  4. MacIntyre, D. L., Miyata, S. T., Kitaoka, M. & Pukatzki, S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc. Natl Acad. Sci. USA 107, 19520–19524 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Allsopp, L. P. & Bernal, P. Killing in the name of: T6SS structure and effector diversity. Microbiology 169, 001367 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Speare, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl Acad. Sci. USA 115, E8528–E8537 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma, L. S., Hachani, A., Lin, J. S., Filloux, A. & Lai, E. M. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16, 94–104 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Borgeaud, S., Metzger, L. C., Scrignari, T. & Blokesch, M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347, 63–67 (2015).

    CAS  PubMed  Google Scholar 

  9. Sana, T. G. et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc. Natl Acad. Sci. USA 113, E5044–E5051 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Verster, A. J. et al. The landscape of type VI secretion across human gut microbiomes reveals its role in community composition. Cell Host Microbe 22, 411–419.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Unterweger, D. et al. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat. Commun. 5, 3549 (2014).

    PubMed  Google Scholar 

  12. Pleška, M., Lang, M., Refardt, D., Levin, B. R. & Guet, C. C. Phage–host population dynamics promotes prophage acquisition in bacteria with innate immunity. Nat. Ecol. Evol. 2, 359–366 (2018).

    PubMed  Google Scholar 

  13. Hussain, F. A. et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 374, 488–492 (2021).

    CAS  PubMed  Google Scholar 

  14. Piel, D. et al. Phage–host coevolution in natural populations. Nat. Microbiol. 7, 1075–1086 (2022).

    CAS  PubMed  Google Scholar 

  15. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    CAS  PubMed  Google Scholar 

  16. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. Makarova, K. S., Wolf, Y. I., Snir, S. & Koonin, E. V. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J. Bacteriol. 193, 6039–6056 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    CAS  PubMed  Google Scholar 

  19. Millman, A. et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 30, 1556–1569.e5 (2022).

    CAS  PubMed  Google Scholar 

  20. Le Roux, F. & Blokesch, M. Eco-evolutionary dynamics linked to horizontal gene transfer in vibrios. Annu. Rev. Microbiol. 72, 89–110 (2018).

  21. Arnold, B. J., Huang, I. T. & Hanage, W. P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218 (2022).

    CAS  PubMed  Google Scholar 

  22. Horne, T., Orr, V. T. & Hall, J. P. How do interactions between mobile genetic elements affect horizontal gene transfer? Curr. Opin. Microbiol. 73, 102282 (2023).

    PubMed  Google Scholar 

  23. Bellanger, X., Payot, S., Leblond-Bourget, N. & Guédon, G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol. Rev. 38, 720–760 (2014).

    CAS  PubMed  Google Scholar 

  24. Khedkar, S. et al. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res. 50, 3155–3168 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stephens, C. et al. F plasmids are the major carriers of antibiotic resistance genes in human-associated commensal Escherichia coli. mSphere 5, e00709–e00720 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Alekshun, M. N. & Levy, S. B. Molecular mechanisms of antibacterial multidrug resistance. Cell 128, 1037–1050 (2007).

    CAS  PubMed  Google Scholar 

  27. Fillol-Salom, A. et al. Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 185, 3248–3262.e20 (2022).

    CAS  PubMed  Google Scholar 

  28. Vassallo, C. N., Doering, C. R., Littlehale, M. L., Teodoro, G. I. C. & Laub, M. T. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat. Microbiol. 7, 1568–1579 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rousset, F. et al. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 30, 740–753.e5 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Salomon, D. et al. Type VI secretion system toxins horizontally shared between marine bacteria. PLoS Pathog. 11, e1005128 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Jana, B., Keppel, K., Fridman, C. M., Bosis, E. & Salomon, D. Multiple T6SSs, mobile auxiliary modules, and effectors revealed in a systematic analysis of the Vibrio parahaemolyticus pan-genome. mSystems 7, e00723-22 (2022).

    PubMed  PubMed Central  Google Scholar 

  32. Thomas, J., Watve, S. S., Ratcliff, W. C. & Hammer, B. K. Horizontal gene transfer of functional type VI killing genes by natural transformation. mBio 8, e00654-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Santoriello, F. J., Kirchberger, P. C., Boucher, Y. & Pukatzki, S. Pandemic Vibrio cholerae acquired competitive traits from an environmental Vibrio species. Life Sci. Alliance 6, e202201437 (2023).

    CAS  PubMed  Google Scholar 

  34. Ruhe, Z. C., Low, D. A. & Hayes, C. S. Polymorphic toxins and their immunity proteins: diversity, evolution, and mechanisms of delivery. Annu. Rev. Microbiol. 74, 497–520 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ellabaan, M. M. H., Munck, C., Porse, A., Imamovic, L. & Sommer, M. O. A. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat. Commun. 12, 2435 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Baker-Austin, C. Vibrio spp. infections. Nat. Rev. Dis. Primers 4, 8 (2018).

    PubMed  Google Scholar 

  37. Hurley, C. C., Quirke, A. M., Reen, F. J. & Boyd, E. F. Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics 7, 104 (2006).

    PubMed  PubMed Central  Google Scholar 

  38. Salomon, D. et al. Marker for type VI secretion system effectors. Proc. Natl Acad. Sci. USA 111, 9271–9276 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fridman, C. M., Jana, B., Ben-Yaakov, R., Bosis, E. & Salomon, D. A DNase type VI secretion system effector requires its MIX domain for secretion. Microbiol. Spectr. 10, e0246522 (2022).

    PubMed  Google Scholar 

  40. Marchler-Bauer, A. et al. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 35, D237–D240 (2007).

    CAS  PubMed  Google Scholar 

  41. Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    CAS  PubMed  Google Scholar 

  42. Guerrero-Bustamante, C. A. & Hatfull, G. F. Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny. mBio 15, e0326023 (2024).

    PubMed  Google Scholar 

  43. Banerjee, S., Petronella, N., Leung, C. C. & Farber, J. Draft genome sequences of four Vibrio parahaemolyticus isolates from clinical cases in Canada. Genome Announc. 3, e01482-14 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Pedelacq, J. D. & Cabantous, S. Development and applications of superfolder and split fluorescent protein detection systems in biology. Int. J. Mol. Sci. 20, 3479 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Davidov, E. & Kaufmann, G. RloC: a wobble nucleotide-excising and zinc-responsive bacterial tRNase. Mol. Microbiol. 69, 1560–1574 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shneider, M. M. et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500, 350–353 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ray, A. et al. Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities. EMBO Rep. 18, 1978–1990 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dar, Y., Salomon, D. & Bosis, E. The antibacterial and anti-eukaryotic type VI secretion system MIX-effector repertoire in Vibrionaceae. Mar. Drugs 16, 433 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jana, B., Fridman, C. M., Bosis, E. & Salomon, D. A modular effector with a DNase domain and a marker for T6SS substrates. Nat. Commun. 10, 3595 (2019).

    PubMed  PubMed Central  Google Scholar 

  50. Koskiniemi, S. et al. Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl Acad. Sci. USA 110, 7032–7037 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Payne, L. J. et al. Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. Nucleic Acids Res. 49, 10868–10878 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Botelho, J. Defense systems are pervasive across chromosomally integrated mobile genetic elements and are inversely correlated to virulence and antimicrobial resistance. Nucleic Acids Res. 51, 4385–4397 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wozniak, R. A. F. et al. Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet. 5, e1000786 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2, 414–424 (2004).

    CAS  PubMed  Google Scholar 

  56. LeGault, K. N. et al. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science 373, eabg2166 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Maffei, E. et al. Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLoS Biol. 19, e3001424 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Johnson, A. G. et al. Bacterial gasdermins reveal an ancient mechanism of cell death. Science 375, 221–225 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ernits, K. et al. The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin–antitoxin and related phage defense systems. Proc. Natl Acad. Sci. USA 120, e2305393120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hossain, A. A. et al. DNA glycosylases provide antiviral defence in prokaryotes. Nature 629, 410–416 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Knizewski, L., Kinch, L. N., Grishin, N. V., Rychlewski, L. & Ginalski, K. Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches. BMC Struct. Biol. 7, 40 (2007).

    PubMed  PubMed Central  Google Scholar 

  62. Steczkiewicz, K., Muszewska, A., Knizewski, L., Rychlewski, L. & Ginalski, K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res. 40, 7016–7045 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Arcus, V. L., Mckenzie, J. L., Robson, J. & Cook, G. M. The PIN-domain ribonucleases and the prokaryotic VapBC toxin–antitoxin array. Protein Eng. Des. Sel. 24, 33–40 (2011).

  64. Gabler, F. et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinformatics 72, e108 (2020).

  65. Fernández-García, L. & Wood, T. K. Phage-defense systems are unlikely to cause cell suicide. Viruses 15, 1795 (2023).

    PubMed  PubMed Central  Google Scholar 

  66. Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol. 21, 686–700 (2023).

    CAS  PubMed  Google Scholar 

  67. Aframian, N. & Eldar, A. Abortive infection antiphage defense systems: separating mechanism and phenotype. Trends Microbiol. 31, 1003–1012 (2023).

    CAS  PubMed  Google Scholar 

  68. Fernández-García, L. et al. Toxin/antitoxin systems induce persistence and work in concert with restriction/modification systems to inhibit phage. Microbiol. Spectr. 12, e0338823 (2024).

    PubMed  Google Scholar 

  69. Scherrer, R. & Moyed, H. S. Conditional impairment of cell division and altered lethality in hipA mutants of Escherichia coli K-12. J. Bacteriol. 170, 3321–3326 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).

    CAS  PubMed  Google Scholar 

  71. Botelho, J. et al. Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa. eBioMedicine 90, 104532 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Salomon, D. MIX and match: mobile T6SS MIX-effectors enhance bacterial fitness. Mob. Genet. Elements 6, e1123796 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Kosek, D., Hickman, A. B., Ghirlando, R., He, S. & Dyda, F. Structures of ISCth4 transpososomes reveal the role of asymmetry in copy-out/paste-in DNA transposition. EMBO J. 40, e105666 (2021).

    CAS  PubMed  Google Scholar 

  74. Chandler, M., Fayet, O., Rousseau, P., Hoang, B. T. & Duval-Valentin, G. in Mobile DNA III (eds Chandler, M. et al.) 591–607 (Wiley, 2015).

  75. Patel, P. H. et al. Anti-phage defence through inhibition of virion assembly. Nat. Commun. 15, 1644 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    CAS  PubMed  Google Scholar 

  77. O’Toole, R., Milton, D. L. & Wolf-Watz, H. Chemotactic motility is required for invasion of the host by the fish pathogen Vibrio anguillarum. Mol. Microbiol. 19, 625–637 (1996).

    PubMed  Google Scholar 

  78. Chung, H. S. & Raetz, C. R. H. Interchangeable domains in the Kdo transferases of Escherichia coli and Haemophilus influenzae. Biochemistry 49, 4126–4137 (2010).

    CAS  PubMed  Google Scholar 

  79. Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569–5576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L. & Stabb, E. V. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl. Environ. Microbiol. 72, 802–810 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cohen, D. et al. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    CAS  PubMed  Google Scholar 

  82. Goren, M. G., Mahata, T. & Qimron, U. An efficient, scarless, selection-free technology for phage engineering. RNA Biol. 20, 830–835 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wannier, T. M. et al. Improved bacterial recombineering by parallelized protein discovery. Proc. Natl Acad. Sci. USA 117, 13689–13698 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nyerges, Á. et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc. Natl Acad. Sci. USA 113, 2502–2507 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yosef, I., Manor, M., Kiro, R. & Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl Acad. Sci. USA 112, 7267–7272 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dar, Y., Jana, B., Bosis, E. & Salomon, D. A binary effector module secreted by a type VI secretion system. EMBO Rep. 23, e53981 (2022).

    CAS  PubMed  Google Scholar 

  88. Fridman, C. M., Keppel, K., Gerlic, M., Bosis, E. & Salomon, D. A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors. Nat. Commun. 11, 1085 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown, C. L. et al. mobileOG-db: a manually curated database of protein families mediating the life cycle of bacterial mobile genetic elements. Appl. Environ. Microbiol. 88, e0099122 (2022).

    PubMed  Google Scholar 

  90. Liu, B., Zheng, D., Zhou, S., Chen, L. & Yang, J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 50, D912–D917 (2022).

    CAS  PubMed  Google Scholar 

  91. Wang, J. et al. BastionHub: a universal platform for integrating and analyzing substrates secreted by Gram-negative bacteria. Nucleic Acids Res. 49, D651–D659 (2021).

    CAS  PubMed  Google Scholar 

  92. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).

    CAS  PubMed  Google Scholar 

  93. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  95. Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276–W279 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).

    CAS  PubMed  Google Scholar 

  98. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

  99. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed  PubMed Central  Google Scholar 

  101. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Salomon, Qimron and Bosis laboratories for helpful discussions and suggestions; A. Endimiani (University of Bern) for gifting us the E. coli ZH142-A strain; and A. Harms (ETH Zurich) for generously sharing the BASEL phage collection. D.S. and E.B. received funding from the Israel Science Foundation (ISF grant number 1362/21). U.Q. was supported by the European Research Council – Horizon 2020 research and innovation programme, grant no. 818878. U.Q. also received funding from the Israeli Ministry of Health in the framework of the ERANET-JPI-AMR, grant no. 15370. K.K. was supported by a PhD scholarship from the Tel Aviv University Center for Combatting Pandemics.

Author information

Authors and Affiliations

Authors

Contributions

T.M., E.B., U.Q. and D.S. conceived the work; T.M., K.K., E.B., U.Q. and D.S. designed experiments; E.B. performed bioinformatic analysis and D.S. assisted in data interpretation; T.M. and K.K. carried out most of the experiments; M.G.G. generated mutant phages and identified escape phages; R.M.R. assisted in performing phage plaque assays; E.B., U.Q. and D.S. acquired the funding and supervised the work. E.B. and D.S. wrote the manuscript draft, and all authors edited and approved the paper.

Corresponding authors

Correspondence to Eran Bosis, Udi Qimron or Dor Salomon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Frédérique Le Roux, François Rousset and Lauren Speare for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Closely related GmtY proteins are found in diverse bacterial orders.

Phylogenetic distribution of GmtY proteins encoded within GMT islands for which an insertion site was identified. The bacterial order and the type of predicted GMT island insertion site are denoted. Blue bars denote the GMT island cargo length. The evolutionary history was inferred by using the Maximum Likelihood method and LG+G+I model. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Evolutionary analyses were conducted in MEGA X.

Extended Data Fig. 2 GMT islands with a predicted intragenic insertion site contain a homolog of the disrupted gene.

Representative GMT islands (cyan rectangles) predicted to disrupt a gene upon insertion into the bacterial genome are shown above a predicted naïve insertion site in a closely related Vibrio strain. The disrupted and the homologous genes are denoted with the same color. Gray rectangles denote homologous regions. The amino acid identity percentage between the protein encoded by the gene in which the predicted naïve insertion site is found and the homolog within the GMT island are denoted in blue rectangles. The strain names and the RefSeq accession numbers are provided.

Extended Data Fig. 3. The insertion site spacer sequence is important to facilitate GMT island insertion.

(a) Agarose gel electrophoresis analysis of the indicated amplicons. The total DNA isolated from wild-type V. parahaemolyticus RIMD 2210633 cells conjugated with an empty plasmid (pEmpty), a plasmid containing a predicted 30 bp-long naïve insertion site for VPaI-6 (pNISVPaI-6), or a plasmid containing a mutated version of the insertion site in which the spacer between the inverted repeats was modified (pNISVPaI-6-Mut), was used as a template. Arrows denote the positions of primers used for each amplicon; the expected amplicon size is denoted in gray. cat, chloramphenicol resistance gene found on the plasmids. A representative result out of at least three independent experiments is shown. (b) The sequences of the natural VPaI-6 naïve insertion site (NISVPaI-6) and its mutated form (NISVPaI-6-Mut) used in (a).

Source data

Extended Data Fig. 4 The GMT island in V. parahaemolyticus 04.2548 is a functional mobile element.

(a) Schematic representation of the GMT island in V. parahaemolyticus 04.2548 (cyan rectangle). A predicted intragenic (tRNA-Gly), inverted repeat-containing (pink and purple-colored sequences) naïve insertion site identified in V. parahaemolyticus 20140829008-1 is shown below. Inverted repeat sequences flanking the GMT island are denoted. GenBank accession numbers are provided. (b) Agarose gel electrophoresis analysis of the indicated amplicons. The total DNA isolated from wild-type V. parahaemolyticus 04.2548 cells conjugated with an empty plasmid (pEmpty), a plasmid containing a predicted naïve insertion site for VPaI-6 (pNISVPaI-6), or a plasmid containing a predicted naïve insertion site for the 04.2548 GMT island (pNIS04.2548), was used as a template. Arrows denote the positions of primers used for each amplicon; the expected amplicon size is denoted in gray. cat, chloramphenicol resistance gene found on the plasmids. A representative result out of at least three independent experiments is shown.

Source data

Extended Data Fig. 5 GAPS1 homologues are widespread in bacteria.

Phylogenetic distribution of GAPS1 homologues. The bacterial order is denoted by color. Blue bars denote the number of genomes in which each protein accession was identified (Log10 scale). The evolutionary history was inferred by using the Maximum Likelihood method and LG+G+I+F model. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Evolutionary analyses were conducted in MEGA X.

Extended Data Fig. 6 Closely positioned residues in the T7 phage capsid protein are mutated in GAPS1 escape mutants.

The position of glutamic acid 183 (yellow), isoleucine 217 (green), and valine 247 (magenta) in the solved structure of the T7 phage capsid protein Gp10 (PDB:3j7x chain G).

Extended Data Fig. 7 GAPS1 homologues in E. coli.

Multiple sequence alignment for the indicated protein sequences was performed with Clustal W using Mega X. Similarity (red letter) and identity (red background) shading were done in ESPript 3.0. The accession number of GAPS1 is WP_005477165.1.

Extended Data Fig. 8 A proposed model for GMT island replicative transfer.

A yet-unknown event or process leads to the excision and circularization of one of the GMT island strands without the flanking inverted repeat sequences; base pairing between the inverted repeat sequences may play a role in the process. A complementary strand is polymerized, resulting in a double-stranded circular form of the GMT island. The GMT system proteins, which are required for the excision and circularization, possibly remain bound to the junction between the ends of the GMT island and mediate recognition of a naïve insertion site containing a specific inverted repeat sequence. The naïve insertion site is cleaved within the spacer sequence found between the inverted repeats, and the GMT island is inserted into the recipient site. In parallel, the cell replaces the excised strand in the donor DNA using the remaining strand as a template. This process results in two identical GMT islands.

Extended Data Fig. 9 Identical GMT islands on the chromosome and on a plasmid have similar predicted insertion sites.

(a-b) The nucleotide sequences flanking identical GMT islands on the chromosome (a) and on a plasmid (b) in Vibrio alginolyticus, and their predicted naïve insertion sites (shown below). Inverted repeat sequences are denoted in blue and green; the conserved repeat core found in both predicted insertion sites is denoted in bold. Direct repeat sequences resulting from apparent spacer duplication upon GMT island insertion into the chromosomal site are denoted in pink and purple (a). Gray rectangles denote identical sequences. The strain names and the GenBank accession numbers are provided.

Extended Data Fig. 10 Identification of GMT islands.

(a) Criteria for the identification of genomic accessions in closely related genomes that are homologous to the sequences flanking the GMT system. Thick lines represent the alignments between query and subject accessions. (b) Sequences upstream and downstream of the GMT islands should contain sequence alignments to the subject accessions in at least 4 kbp out of 10 kbp upstream and downstream sequences. (c) Grouping of alignments meeting all the requirements to determine the 5′ and 3′ borders of GMT islands. (d) Intragenic and intergenic insertion sites. (e) Analysis of sequences surrounding a predicted insertion site to identify direct and inverted repeats. Bold letters denote an inverted repeat found within the sequence example.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and references (for citations found in supplementary tables).

Reporting Summary

Peer Review File

Supplementary Tables

Table 1: Mutations found in GAPS1 T7 phage escape mutants. Table 2: List of bacterial strains used in this study. Table 3: List of gene fragments that were commercially synthesized for this study. Table 4: List of plasmids used in this study. Table 5: List of primers used in this study. Table 6: List of bacteriophages used in this study.

Supplementary Data 1

List of GMT proteins and adjacently encoded proteins.

Supplementary Data 2

The borders of GMT islands found within complete genomes.

Supplementary Data 3

Anti-phage defence systems and antibacterial T6SS effectors identified in GMT island cargoes and the presence of a T6SS in these strains.

Supplementary Data 4

List of GAPS1 homologues.

Source data

Source Data Fig. 1

Unprocessed gels.

Source Data Fig. 2

Unprocessed gels.

Source Data Figs. 2–6

Graph and statistical source data for Figs. 2–6.

Source Data Extended Data Fig. 3

Unprocessed gels.

Source Data Extended Data Fig. 4

Unprocessed gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, T., Kanarek, K., Goren, M.G. et al. Gamma-Mobile-Trio systems are mobile elements rich in bacterial defensive and offensive tools. Nat Microbiol 9, 3268–3283 (2024). https://doi.org/10.1038/s41564-024-01840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-024-01840-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology