Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phosphoinositides as membrane organizers

Abstract

Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolism and subcellular enrichment of phosphoinositides.
Fig. 2: Phosphoinositide conversions during endocytosis and endosomal sorting.
Fig. 3: Phosphoinositide control of lysosome function.
Fig. 4: Phosphoinositides at membrane contact sites.

Similar content being viewed by others

References

  1. Behnia, R. & Munro, S. Organelle identity and the signposts for membrane traffic. Nature 438, 597–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Prinz, W. A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Wu, H., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: the importance of ER membrane contact sites. Science https://doi.org/10.1126/science.aan5835 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Balla, T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93, 1019–1137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bilanges, B., Posor, Y. & Vanhaesebroeck, B. PI3K isoforms in cell signalling and vesicle trafficking. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-019-0129-z (2019).

    Article  PubMed  Google Scholar 

  6. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  PubMed  Google Scholar 

  7. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Staiano, L., De Leo, M. G., Persico, M. & De Matteis, M. A. Mendelian disorders of PI metabolizing enzymes. Biochim. Biophys. Acta 1851, 867–881 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Goncalves, M. D., Hopkins, B. D. & Cantley, L. C. Phosphatidylinositol 3-kinase, growth disorders, and cancer. N. Engl. J. Med. 379, 2052–2062 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Falkenburger, B. H., Jensen, J. B., Dickson, E. J., Suh, B. C. & Hille, B. Phosphoinositides: lipid regulators of membrane proteins. J. Physiol. 588, 3179–3185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hille, B., Dickson, E. J., Kruse, M., Vivas, O. & Suh, B. C. Phosphoinositides regulate ion channels. Biochim. Biophys. Acta 1851, 844–856 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Vanhaesebroeck, B., Perry, M. W. D., Brown, J. R., Andre, F. & Okkenhaug, K. PI3K inhibitors are finally coming of age. Nat. Rev. Drug Discov. 20, 741–769 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Larijani, B., Pytowski, L. & Vaux, D. J. The enigma of phosphoinositides and their derivatives: their role in regulation of subcellular compartment morphology. Biochim. Biophys. Acta Biomembr. 1864, 183780 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Hokin, M. R. & Hokin, L. E. Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J. Biol. Chem. 203, 967–977 (1953).

    Article  CAS  PubMed  Google Scholar 

  15. Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Godi, A. et al. ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat. Cell Biol. 1, 280–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Sasaki, J., Ishikawa, K., Arita, M. & Taniguchi, K. ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. EMBO J. 31, 754–766 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Blumental-Perry, A. et al. Phosphatidylinositol 4-phosphate formation at ER exit sites regulates ER export. Dev. Cell 11, 671–682 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Szentpetery, Z., Varnai, P. & Balla, T. Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proc. Natl Acad. Sci. USA 107, 8225–8230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Wieffer, M. et al. PI4K2beta/AP-1-based TGN-endosomal sorting regulates Wnt signaling. Curr. Biol. 23, 2185–2190 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Daboussi, L., Costaguta, G., Ghukasyan, R. & Payne, G. S. Conserved role for Gga proteins in phosphatidylinositol 4-kinase localization to the trans-Golgi network. Proc. Natl Acad. Sci. USA 114, 3433–3438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Craige, B., Salazar, G. & Faundez, V. Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic. Mol. Biol. Cell 19, 1415–1426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rahajeng, J. et al. Efficient Golgi forward trafficking requires GOLPH3-driven, PI4P-dependent membrane curvature. Dev. Cell 50, 573–585 e575 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Matteis, M. A. & Luini, A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 9, 273–284 (2008).

    Article  PubMed  Google Scholar 

  26. Mahajan, D., Tie, H. C., Chen, B. & Lu, L. Dopey1-Mon2 complex binds to dual-lipids and recruits kinesin-1 for membrane trafficking. Nat. Commun. 10, 3218 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Valente, C. et al. A 14-3-3gamma dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIbeta to regulate post-Golgi carrier formation. Nat. Cell Biol. 14, 343–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Liljedahl, M. et al. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104, 409–420 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Baron, C. L. & Malhotra, V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295, 325–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Hausser, A. et al. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIbeta at the Golgi complex. Nat. Cell Biol. 7, 880–886 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu, D. et al. Phosphatidylinositol 4-kinase IIalpha is palmitoylated by Golgi-localized palmitoyltransferases in cholesterol-dependent manner. J. Biol. Chem. 287, 21856–21865 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baba, T. et al. Myelination of peripheral nerves is controlled by PI4KB through regulation of Schwann cell Golgi function. Proc. Natl Acad. Sci. USA 117, 28102–28113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blagoveshchenskaya, A. et al. Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1. J. Cell Biol. 180, 803–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shin, J. J. H. et al. pH biosensing by PI4P regulates cargo sorting at the TGN. Dev. Cell 52, 461–476 e464 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Milosevic, I. et al. Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J. Neurosci. 25, 2557–2565 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walter, A. M. et al. Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. eLife https://doi.org/10.7554/eLife.30203 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen, Y. et al. Synaptotagmin-1 interacts with PI(4,5)P2 to initiate synaptic vesicle docking in hippocampal neurons. Cell Rep. 34, 108842 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. He, B., Xi, F., Zhang, X., Zhang, J. & Guo, W. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J. 26, 4053–4065 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nishida-Fukuda, H. The exocyst: dynamic machine or static tethering complex? Bioessays 41, e1900056 (2019).

    Article  PubMed  Google Scholar 

  40. Mizuno-Yamasaki, E., Medkova, M., Coleman, J. & Novick, P. Phosphatidylinositol 4-phosphate controls both membrane recruitment and a regulatory switch of the Rab GEF Sec2p. Dev. Cell 18, 828–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ketel, K. et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature 529, 408–412 (2016). This work identifies an endosomal mechanism of PtdIns3P-to-PtdIns4P conversion to enable exocytosis that involves a lipid phosphatase mutated in a human muscle disease.

    Article  CAS  PubMed  Google Scholar 

  42. Guo, J. et al. Phosphatidylinositol 4-kinase type IIalpha is responsible for the phosphatidylinositol 4-kinase activity associated with synaptic vesicles. Proc. Natl Acad. Sci. USA 100, 3995–4000 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hammond, G. R. et al. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337, 727–730 (2012). This study reports on an important function of PtdIns4P at the plasma membrane that is independent of its role as a precursor for PtdIns(4,5)P2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakatsu, F. et al. PtdIns4P synthesis by PI4KIIIalpha at the plasma membrane and its impact on plasma membrane identity. J. Cell Biol. 199, 1003–1016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baskin, J. M. et al. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane. Nat. Cell Biol. 18, 132–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Marat, A. L. & Haucke, V. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic. EMBO J. 35, 561–579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Zoncu, R. et al. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc. Natl Acad. Sci. USA 104, 3793–3798 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Posor, Y., Eichhorn-Grunig, M. & Haucke, V. Phosphoinositides in endocytosis. Biochim. Biophys. Acta 1851, 794–804 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Kelly, B. T. et al. Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch. Science 345, 459–463 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hollopeter, G. et al. The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex. eLife https://doi.org/10.7554/eLife.03648 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lehmann, M. et al. Nanoscale coupling of endocytic pit growth and stability. Sci. Adv. 5, eaax5775 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Krauss, M., Kukhtina, V., Pechstein, A. & Haucke, V. Stimulation of phosphatidylinositol kinase type I-mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2mu-cargo complexes. Proc. Natl Acad. Sci. USA 103, 11934–11939 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thieman, J. R. et al. Clathrin regulates the association of PIPKIgamma661 with the AP-2 adaptor beta2 appendage. J. Biol. Chem. 284, 13924–13939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Posor, Y. et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499, 233–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Perera, R. M., Zoncu, R., Lucast, L., De Camilli, P. & Toomre, D. Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc. Natl Acad. Sci. USA 103, 19332–19337 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakatsu, F. et al. The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics. J. Cell Biol. 190, 307–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lo, W. T. et al. Structural basis of phosphatidylinositol 3-kinase C2alpha function. Nat. Struct. Mol. Biol. 29, 218–228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, H. et al. Phosphatidylinositol 3,4-bisphosphate synthesis and turnover are spatially segregated in the endocytic pathway. J. Biol. Chem. 295, 1091–1104 (2020).

    Article  PubMed  Google Scholar 

  60. Gulluni, F. et al. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science 374, eabk0410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lo, W. T. et al. A coincidence detection mechanism controls PX-BAR domain-mediated endocytic membrane remodeling via an allosteric structural switch. Dev. Cell 43, 522–529 e524 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Schoneberg, J. et al. Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission. Nat. Commun. 8, 15873 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Almeida-Souza, L. et al. A flat BAR protein promotes actin polymerization at the base of clathrin-coated pits. Cell 174, 325–337 e314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reubold, T. F. et al. Crystal structure of the dynamin tetramer. Nature 525, 404–408 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Bethoney, K. A., King, M. C., Hinshaw, J. E., Ostap, E. M. & Lemmon, M. A. A possible effector role for the pleckstrin homology (PH) domain of dynamin. Proc. Natl Acad. Sci. USA 106, 13359–13364 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jost, M., Simpson, F., Kavran, J. M., Lemmon, M. A. & Schmid, S. L. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol. 8, 1399–1402 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Milosevic, I. et al. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 72, 587–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cauvin, C. et al. Rab35 GTPase triggers switch-like recruitment of the Lowe syndrome lipid phosphatase OCRL on newborn endosomes. Curr. Biol. 26, 120–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Nandez, R. et al. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells. eLife 3, e02975 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. He, K. et al. Dynamics of auxilin 1 and GAK in clathrin-mediated traffic. J. Cell Biol. https://doi.org/10.1083/jcb.201908142 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Massol, R. H., Boll, W., Griffin, A. M. & Kirchhausen, T. A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc. Natl Acad. Sci. USA 103, 10265–10270 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shin, H. W. et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J. Cell Biol. 170, 607–618 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. He, K. et al. Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic. Nature 552, 410–414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goulden, B. D. et al. A high-avidity biosensor reveals plasma membrane PI(3,4)P2 is predominantly a class I PI3K signaling product. J. Cell Biol. 218, 1066–1079 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sigismund, S., Lanzetti, L., Scita, G. & Di Fiore, P. P. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat. Rev. Mol. Cell Biol. 22, 625–643 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Boucrot, E. et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517, 460–465 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Krause, M. et al. Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev. Cell 7, 571–583 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Chan Wah Hak, L. et al. FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis. Nat. Cell Biol. 20, 1023–1031 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Walpole, G. F. W. & Grinstein, S. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides. F1000Res https://doi.org/10.12688/f1000research.22393.1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Botelho, R. J. et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1368 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schlam, D. et al. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nat. Commun. 6, 8623 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Ostrowski, P. P., Freeman, S. A., Fairn, G. & Grinstein, S. Dynamic podosome-like structures in nascent phagosomes are coordinated by phosphoinositides. Dev. Cell 50, 397–410 e393 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Maekawa, M. et al. Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis. Proc. Natl Acad. Sci. USA 111, E978–E987 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schink, K. O. et al. The phosphoinositide coincidence detector Phafin2 promotes macropinocytosis by coordinating actin organisation at forming macropinosomes. Nat. Commun. 12, 6577 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zeigerer, A. et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485, 465–470 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Semerdjieva, S. et al. Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. J. Cell Biol. 183, 499–511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tremel, S. et al. Structural basis for VPS34 kinase activation by Rab1 and Rab5 on membranes. Nat. Commun. 12, 1564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wandinger-Ness, A. & Zerial, M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb. Perspect. Biol. 6, a022616 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Liu, H. et al. The INPP4B tumor suppressor modulates EGFR trafficking and promotes triple-negative breast cancer. Cancer Discov. 10, 1226–1239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aki, S., Yoshioka, K., Takuwa, N. & Takuwa, Y. TGFbeta receptor endocytosis and Smad signaling require synaptojanin1, PI3K-C2alpha-, and INPP4B-mediated phosphoinositide conversions. Mol. Biol. Cell 31, 360–372 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Norris, A. et al. SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proc. Natl Acad. Sci. USA 114, E307–E316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cullen, P. J. & Steinberg, F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol. 19, 679–696 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Weeratunga, S., Paul, B. & Collins, B. M. Recognising the signals for endosomal trafficking. Curr. Opin. Cell Biol. 65, 17–27 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Ghai, R. et al. Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc. Natl Acad. Sci. USA 108, 7763–7768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Simonetti, B. et al. Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins. Nat. Cell Biol. 21, 1219–1233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Singla, A. et al. Endosomal PI(3)P regulation by the COMMD/CCDC22/CCDC93 (CCC) complex controls membrane protein recycling. Nat. Commun. 10, 4271 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Campa, C. C. et al. Rab11 activity and PtdIns(3)P turnover removes recycling cargo from endosomes. Nat. Chem. Biol. 14, 801–810 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Franco, I. et al. PI3K class II alpha controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev. Cell 28, 647–658 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dong, R. et al. Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 166, 408–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vietri, M., Radulovic, M. & Stenmark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 21, 25–42 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Poteryaev, D., Datta, S., Ackema, K., Zerial, M. & Spang, A. Identification of the switch in early-to-late endosome transition. Cell 141, 497–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Borchers, A. C., Langemeyer, L. & Ungermann, C. Who’s in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J. Cell Biol. https://doi.org/10.1083/jcb.202105120 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. de Lartigue, J. et al. PIKfyve regulation of endosome-linked pathways. Traffic 10, 883–893 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hasegawa, J., Strunk, B. S. & Weisman, L. S. PI5P and PI(3,5)P2: minor, but essential phosphoinositides. Cell Struct. Funct. 42, 49–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lawrence, R. E. & Zoncu, R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 21, 133–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Ebner, M., Koch, P. A. & Haucke, V. Phosphoinositides in the control of lysosome function and homeostasis. Biochem. Soc. Trans. 47, 1173–1185 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Saha, S., Panigrahi, D. P., Patil, S. & Bhutia, S. K. Autophagy in health and disease: a comprehensive review. Biomed. Pharmacother. 104, 485–495 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Palamiuc, L., Ravi, A. & Emerling, B. M. Phosphoinositides in autophagy: current roles and future insights. FEBS J. 287, 222–238 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Judith, D. et al. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIbeta. J. Cell Biol. 218, 1634–1652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mercer, T. J. et al. Phosphoproteomic identification of ULK substrates reveals VPS15-dependent ULK/VPS34 interplay in the regulation of autophagy. EMBO J. 40, e105985 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Boukhalfa, A. et al. PI3KC2alpha-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat. Commun. 11, 294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dooley, H. C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55, 238–252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fracchiolla, D., Chang, C., Hurley, J. H. & Martens, S. A PI3K-WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy. J. Cell Biol. https://doi.org/10.1083/jcb.201912098 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bakula, D. et al. WIPI3 and WIPI4 beta-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat. Commun. 8, 15637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Raess, M. A., Friant, S., Cowling, B. S. & Laporte, J. WANTED - dead or alive: myotubularins, a large disease-associated protein family. Adv. Biol. Regul. 63, 49–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Xu, H. & Ren, D. Lysosomal physiology. Annu. Rev. Physiol. 77, 57–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Noda, T., Matsunaga, K., Taguchi-Atarashi, N. & Yoshimori, T. Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin. Cell Dev. Biol. 21, 671–676 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Hasegawa, J. et al. Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome. EMBO J. 35, 1853–1867 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hong, N. H., Qi, A. & Weaver, A. M. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin-actin interactions. J. Cell Biol. 210, 753–769 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dong, X. P. et al. PI(3,5)P2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat. Commun. 1, 38 (2010).

    Article  PubMed  Google Scholar 

  123. Wang, X. et al. TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell 151, 372–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Akizu, N. et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat. Genet. 47, 528–534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bielas, S. L. et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 41, 1032–1036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Baba, T., Toth, D. J., Sengupta, N., Kim, Y. J. & Balla, T. Phosphatidylinositol 4,5-bisphosphate controls Rab7 and PLEKMH1 membrane cycling during autophagosome-lysosome fusion. EMBO J. (2019).

  127. Perera, R. M., Di Malta, C. & Ballabio, A. MiT/TFE family of transcription factors, lysosomes, and cancer. Annu. Rev. Cancer Biol. 3, 203–222 (2019).

    Article  PubMed  Google Scholar 

  128. De Leo, M. G. et al. Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nat. Cell Biol. 18, 839–850 (2016). This important study uncovers a lysosomal cargo response required to sustain autophagic flux via local confinement of PtdIns(4,5)P2 by the lipid phosphatase OCRL.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lundquist, M. R. et al. Phosphatidylinositol-5-phosphate 4-kinases regulate cellular lipid metabolism by facilitating autophagy. Mol. Cell 70, 531–544 e539 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Marat, A. L. et al. mTORC1 activity repression by late endosomal phosphatidylinositol 3,4-bisphosphate. Science 356, 968–972 (2017). This work identifies class II PI3K-mediated synthesis of PtdIns(3,4)P2 as a local repressor of mTORC1 signalling on lysosomes in response to cessation of growth factor signalling.

    Article  CAS  PubMed  Google Scholar 

  131. Li, S. C. et al. The signaling lipid PI(3,5)P(2) stabilizes V(1)-V(o) sector interactions and activates the V-ATPase. Mol. Biol. Cell 25, 1251–1262 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wallroth, A. & Haucke, V. Phosphoinositide conversion in endocytosis and the endolysosomal system. J. Biol. Chem. https://doi.org/10.1074/jbc.R117.000629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Nobukuni, T. et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl Acad. Sci. USA 102, 14238–14243 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yoon, M. S., Du, G., Backer, J. M., Frohman, M. A. & Chen, J. Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway. J. Cell Biol. 195, 435–447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hong, Z. et al. PtdIns3P controls mTORC1 signaling through lysosomal positioning. J. Cell Biol. 216, 4217–4233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Raiborg, C. et al. Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth. Nature 520, 234–238 (2015). This study identifies a mechanism for late endosome/lysosome dispersion via membrane contacts with the ER-localized kinesin adaptor protrudin, FYCO1 and PtdIns3P.

    Article  CAS  PubMed  Google Scholar 

  137. Tsuruta, F. & Dolmetsch, R. E. PIKfyve mediates the motility of late endosomes and lysosomes in neuronal dendrites. Neurosci. Lett. 605, 18–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Sawade, L. et al. Rab35-regulated lipid turnover by myotubularins represses mTORC1 activity and controls myelin growth. Nat. Commun. 11, 2835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bridges, D. et al. Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Mol. Biol. Cell 23, 2955–2962 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fitzian, K. et al. TSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation. Mol. Cell 81, 2705–2721 e2708 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Gozzelino, L. et al. Defective lipid signaling caused by mutations in PIK3C2B underlies focal epilepsy. Brain (in press, 2022).

  142. Dong, J. et al. Allosteric enhancement of ORP1-mediated cholesterol transport by PI(4,5)P2/PI(3,4)P2. Nat. Commun. 10, 829 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Castellano, B. M. et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science 355, 1306–1311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wallroth, A., Koch, P. A., Marat, A. L., Krause, E. & Haucke, V. Protein kinase N controls a lysosomal lipid switch to facilitate nutrient signalling via mTORC1. Nat. Cell Biol. 21, 1093–1101 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Guardia, C. M., Farias, G. G., Jia, R., Pu, J. & Bonifacino, J. S. BORC functions upstream of kinesins 1 and 3 to coordinate regional movement of lysosomes along different microtubule tracks. Cell Rep. 17, 1950–1961 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rosa-Ferreira, C. & Munro, S. Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev. Cell 21, 1171–1178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cantalupo, G., Alifano, P., Roberti, V., Bruni, C. B. & Bucci, C. Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBO J. 20, 683–693 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jordens, I. et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol. 11, 1680–1685 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Marwaha, R. et al. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J. Cell Biol. 216, 1051–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Du, W. et al. Kinesin 1 drives autolysosome tubulation. Dev. Cell 37, 326–336 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Rong, Y. et al. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat. Cell Biol. 14, 924–934 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Bissig, C., Hurbain, I., Raposo, G. & van Niel, G. PIKfyve activity regulates reformation of terminal storage lysosomes from endolysosomes. Traffic 18, 747–757 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Schulze, R. J. et al. Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J. Cell Biol. 203, 315–326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Munson, M. J. et al. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 34, 2272–2290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chang, J., Lee, S. & Blackstone, C. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J. Clin. Invest. 124, 5249–5262 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Hirst, J., Hesketh, G. G., Gingras, A. C. & Robinson, M. S. Rag GTPases and phosphatidylinositol 3-phosphate mediate recruitment of the AP-5/SPG11/SPG15 complex. J. Cell Biol. https://doi.org/10.1083/jcb.202002075 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Giordano, F. et al. PI(4,5)P2-dependent and Ca2+-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153, 1494–1509 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chang, C.-L. et al. Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep. 5, 813–825 (2013).

    Article  PubMed  Google Scholar 

  160. Saheki, Y. et al. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat. Cell Biol. 18, 504–515 (2016). Extended synaptotagmins are shown to act as PtdIns(4,5)P2- and Ca2+-regulated tethers that transfer glycerolipids between the ER and the plasma membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lees, J. A. et al. Lipid transport by TMEM24 at ER–plasma membrane contacts regulates pulsatile insulin secretion. Science 355, eaah6171 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Chung, J. et al. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349, 428–432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sohn, M. et al. PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites. J. Cell Biol. 217, 1797–1813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Shirane, M. et al. Protrudin and PDZD8 contribute to neuronal integrity by promoting lipid extraction required for endosome maturation. Nat. Commun. 11, 1–19 (2020).

    Article  Google Scholar 

  166. Lim, C.-Y. et al. ER–lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann–Pick type C. Nat. Cell Biol. 21, 1206–1218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mesmin, B. et al. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155, 830–843 (2013). This is a landmark study that identifies OSBP as a lipid shuttle utilizing the gradient of PtdIns4P between the ER and the TGN to promote cholesterol export at MCSs.

    Article  CAS  PubMed  Google Scholar 

  168. D’Angelo, G. et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449, 62–67 (2007).

    Article  PubMed  Google Scholar 

  169. Murakami, H. et al. Intellectual disability-associated gain-of-function mutations in CERT1 that encodes the ceramide transport protein CERT. PLoS ONE 15, e0243980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kawasaki, A. et al. PI4P/PS countertransport by ORP10 at ER–endosome membrane contact sites regulates endosome fission. J. Cell Biol. 221, e202103141 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7–RILP–p150Glued and late endosome positioning. J. Cell Biol. 185, 1209–1225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Levin-Konigsberg, R. et al. Phagolysosome resolution requires contacts with the endoplasmic reticulum and phosphatidylinositol-4-phosphate signalling. Nat. Cell Biol. 21, 1234–1247 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Malek, M. et al. Inositol triphosphate-triggered calcium release blocks lipid exchange at endoplasmic reticulum-Golgi contact sites. Nat. Commun. 12, 2673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kim, Y. J., Guzman-Hernandez, M.-L., Wisniewski, E. & Balla, T. Phosphatidylinositol-phosphatidic acid exchange by Nir2 at ER-PM contact sites maintains phosphoinositide signaling competence. Dev. Cell 33, 549–561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cockcroft, S. & Lev, S. Mammalian PITPs at the Golgi and ER-Golgi membrane contact sites. Contact 3, 2515256420964170 (2020).

    Article  Google Scholar 

  176. Wang, H. & Tai, A. W. Nir2 is an effector of VAPs necessary for efficient hepatitis C virus replication and phosphatidylinositol 4-phosphate enrichment at the viral replication organelle. J. Virol. 93, e00742-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Takahashi, K. et al. ORP2 couples LDL-cholesterol transport to FAK activation by endosomal cholesterol/PI(4,5)P2 exchange. EMBO J. 40, e106871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nagashima, S. et al. Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 367, 1366–1371 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Gong, B. et al. A Golgi-derived vesicle potentiates PtdIns4P to PtdIns3P conversion for endosome fission. Nat. Cell Biol. 23, 782–795 (2021). Nagashima et al. (2020) and Gong et al. (2021) show that TGN-derived PtdIns4P-containing vesicles are recruited to ER-based ternary MCSs to trigger fission of mitochondria and endosomes, respectively.

    Article  CAS  PubMed  Google Scholar 

  180. Sabha, N. et al. PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models. J. Clin. Invest. 126, 3613–3625 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Walpole, G. F. W., Grinstein, S. & Westman, J. The role of lipids in host-pathogen interactions. IUBMB Life 70, 384–392 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Wang, R. et al. Genetic screens identify host factors for SARS-CoV-2 and common cold coronaviruses. Cell 184, 106–119 e114 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Kang, Y. L. et al. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 20803–20813 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Alliouachene, S. et al. Inactivation of the class II PI3K-C2beta potentiates insulin signaling and sensitivity. Cell Rep. 13, 1881–1894 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Braccini, L. et al. PI3K-C2gamma is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat. Commun. 6, 7400 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Mazloumi Gavgani, F. et al. Class I phosphoinositide 3-kinase PIK3CA/p110alpha and PIK3CB/p110beta isoforms in endometrial cancer. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19123931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zhang, M. et al. INPP4B protects from metabolic syndrome and associated disorders. Commun. Biol. 4, 416 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Pemberton, J. G. et al. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. J. Cell Biol. https://doi.org/10.1083/jcb.201906130 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Hammond, G. R., Machner, M. P. & Balla, T. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J. Cell Biol. 205, 113–126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Balla, A., Tuymetova, G., Tsiomenko, A., Varnai, P. & Balla, T. A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol. Biol. Cell 16, 1282–1295 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lemmon, M. A., Ferguson, K. M., O’Brien, R., Sigler, P. B. & Schlessinger, J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl Acad. Sci. USA 92, 10472–10476 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Stauffer, T. P., Ahn, S. & Meyer, T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 8, 343–346 (1998).

    Article  CAS  PubMed  Google Scholar 

  193. Manna, D., Albanese, A., Park, W. S. & Cho, W. Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J. Biol. Chem. 282, 32093–32105 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Watton, S. J. & Downward, J. Akt/PKB localisation and 3’ phosphoinositide generation at sites of epithelial cell-matrix and cell-cell interaction. Curr. Biol. 9, 433–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Varnai, P., Rother, K. I. & Balla, T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J. Biol. Chem. 274, 10983–10989 (1999).

    Article  CAS  PubMed  Google Scholar 

  196. Hammond, G. R. & Balla, T. Polyphosphoinositide binding domains: key to inositol lipid biology. Biochim. Biophys. Acta 1851, 746–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nicholson, G. et al. Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P(2) phosphatase FIG4. Brain 134, 1959–1971 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Elong Edimo, W., Schurmans, S., Roger, P. P. & Erneux, C. SHIP2 signaling in normal and pathological situations: its impact on cell proliferation. Adv. Biol. Regul. 54, 142–151 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Quadri, M. et al. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum. Mutat. 34, 1208–1215 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Previtali, S. C., Quattrini, A. & Bolino, A. Charcot-Marie-Tooth type 4B demyelinating neuropathy: deciphering the role of MTMR phosphatases. Expert. Rev. Mol. Med. 9, 1–16 (2007).

    Article  PubMed  Google Scholar 

  201. De Matteis, M. A., Staiano, L., Emma, F. & Devuyst, O. The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nat. Rev. Nephrol. 13, 455–470 (2017).

    Article  PubMed  Google Scholar 

  202. Ngeow, J. & Eng, C. PTEN in hereditary and sporadic cancer. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a036087 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Madsen, R. R., Vanhaesebroeck, B. & Semple, R. K. Cancer-associated PIK3CA mutations in overgrowth disorders. Trends Mol. Med. 24, 856–870 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Graupera, M. et al. Angiogenesis selectively requires the p110 alpha isoform of PI3K to control endothelial cell migration. Nature 453, 662–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Foukas, L. C. et al. Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441, 366–370 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Lucas, C. L., Chandra, A., Nejentsev, S., Condliffe, A. M. & Okkenhaug, K. PI3Kdelta and primary immunodeficiencies. Nat. Rev. Immunol. 16, 702–714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Takeda, A. J. et al. Human PI3Kgamma deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nat. Commun. 10, 4364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Tiosano, D. et al. Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction. PLoS Genet. 15, e1008088 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ikonomov, O. C., Sbrissa, D. & Shisheva, A. Small molecule PIKfyve inhibitors as cancer therapeutics: translational promises and limitations. Toxicol. Appl. Pharm. https://doi.org/10.1016/j.taap.2019.114771 (2019).

    Article  Google Scholar 

  210. Lima, K. et al. PIP4K2A and PIP4K2C transcript levels are associated with cytogenetic risk and survival outcomes in acute myeloid leukemia. Cancer Genet. 233-234, 56–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Narkis, G. et al. Lethal contractural syndrome type 3 (LCCS3) is caused by a mutation in PIP5K1C, which encodes PIPKI gamma of the phophatidylinsitol pathway. Am. J. Hum. Genet. 81, 530–539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Li, S. L. et al. Mutations in PIP5K3 are associated with Francois-Neetens Mouchetee fleck corneal dystrophy. Am. J. Hum. Genet. 77, 54–63 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Idevall-Hagren, O. & De Camilli, P. Detection and manipulation of phosphoinositides. Biochim. Biophys. Acta 1851, 736–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Clark, J. et al. Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat. Methods 8, 267–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Malek, M. et al. PTEN regulates PI(3,4)P2 signaling downstream of class I PI3K. Mol. Cell 68, 566–580 e510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Cheung, H. Y. F. et al. Targeted phosphoinositides analysis using high-performance ion chromatography-coupled selected reaction monitoring mass spectrometry. J. Proteome Res. 20, 3114–3123 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Li, P. & Lammerhofer, M. Isomer selective comprehensive lipidomics analysis of phosphoinositides in biological samples by liquid chromatography with data independent acquisition tandem mass spectrometry. Anal. Chem. 93, 9583–9592 (2021).

    Article  PubMed  Google Scholar 

  218. Suh, B. C., Inoue, T., Meyer, T. & Hille, B. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454–1457 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Varnai, P., Thyagarajan, B., Rohacs, T. & Balla, T. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J. Cell Biol. 175, 377–382 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Idevall-Hagren, O., Dickson, E. J., Hille, B., Toomre, D. K. & De Camilli, P. Optogenetic control of phosphoinositide metabolism. Proc. Natl Acad. Sci. USA 109, E2316–E2323 (2012). Together with Suh et al. (2006) and Varnai et al. (2006), this work provides elegant toolsets for the acute perturbation of phosphoinositide levels by induced recruitment of a lipid phosphatase via a ligand or by light.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Laketa, V. et al. Membrane-permeant phosphoinositide derivatives as modulators of growth factor signaling and neurite outgrowth. Chem. Biol. 16, 1190–1196 (2009).

    Article  CAS  PubMed  Google Scholar 

  222. Subramanian, D. et al. Activation of membrane-permeant caged PtdIns(3)P induces endosomal fusion in cells. Nat. Chem. Biol. 6, 324–326 (2010).

    Article  CAS  PubMed  Google Scholar 

  223. Laketa, V. et al. PIP(3) induces the recycling of receptor tyrosine kinases. Sci. Signal. 7, ra5 (2014).

    Article  PubMed  Google Scholar 

  224. Muller, R., Kojic, A., Citir, M. & Schultz, C. Synthesis and cellular labeling of multifunctional phosphatidylinositol bis- and trisphosphate derivatives. Angew. Chem. Int. Ed. 60, 19759–19765 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support of their own work by grants from the Deutsche Forschungsgemeinschaft (TRR186/A08, HA2686/15-1 and HA2686/22-1 to V.H.), the European Union (H2020-MSCA-ITN-2015:675392 to V.H.), the Leibniz Association (SAW K216/2016 to V.H.) and the European Research Council (ERC-AdG to V.H.). W.J. was supported by a Leibniz-German Academic Exchange Service (DAAD) Research Fellowship (57423756) and the Postdoctoral Fellowship Program (Nurturing Next-generation Researchers) of the National Research Foundation of Korea (2018R1A6A3A03010583).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Volker Haucke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Harald Stenmark and Maria Antonietta De Matteis for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Endosomes

Membrane-bound compartments on the endocytic route that can be distinguished as early, late and recycling endosomes. Early endosomes act as sorting stations and are marked by RAB5 and phosphatidylinositol 3-phosphate. They can mature into RAB7-positive late endosomes (also called ‘multivesicular bodies’) by inward budding. Recycling endosomes are tubular in nature and recycle cargo to the cell surface.

PtdIns 3-kinase

(PI3K). A family of lipid kinases that phosphorylate the 3′ position of the inositol head group of phosphatidylinositol (PtdIns) lipids. Class I PI3Ks act in receptor signalling, whereas class II and class III PI3Ks primarily control intracellular membrane dynamics.

Click chemistry

A class of biocompatible organic reactions that rapidly and selectively react (‘click’) with each other under mild, aqueous conditions.

Autophagy

A stress-inducible catabolic process that involves the formation of double membrane-bounded autophagosomes that fuse with lysosomes to mediate catabolic turnover of proteins, organelles or pathogens.

Phospholipase C

(PLC). A group of hydrolytic enzymes that cleave phosphatidylinositol 4,5-bisphosphate into inositol 3,4,5-trisphosphate and diacylglycerol.

COPII

Coatomer complex II, a type of coat protein that promotes the formation of secretory vesicles or tubules from exit sites of the endoplasmic reticulum to effect cargo transport to the endoplasmic reticulum–Golgi intermediate compartment.

trans-Golgi network

(TGN). A highly dynamic series of interconnected tubules and vesicles at the trans face of the Golgi stack. The TGN functions in the sorting and processing of glycoproteins and glycolipids at the interface of the biosynthetic and endosomal pathways (for example, protein secretion and the sorting of lysosomal enzymes).

Clathrin adaptor proteins

A collective term for proteins/protein complexes that recruit clathrin — a triskelial scaffold protein comprising three heavy chains and three associated light chains — to membranes and aid polymerization, often via binding to phosphoinositide lipids (for example, adaptor complexes AP1 and AP2, and monomeric GGA1, GGA2 and GGA3).

DOPEY1–MON2 complex

A protein complex comprising the peripheral Golgi membrane proteins DOPEY1 and MON2, a relative of the SEC7 family of guanine-nucleotide exchange factors for ARF GTPases, proposed to act as a phosphatidylinositol 4-phosphate-dependent kinesin adaptor for membrane traffic at the trans-Golgi network.

14-3-3 protein

A family of conserved regulatory proteins expressed in all eukaryotic cells that can bind to functionally diverse, usually phosphorylated signalling proteins to regulate their function.

Glycosphingolipids

A subclass of glycolipids that contain the amino alcohol sphingosine. They are found in the cell membranes of organisms from bacteria to humans and are the major glycolipids of animals.

Sphingomyelin

An abundant phosphosphingolipid in animal cell membranes; it is especially enriched in the membranous myelin sheath that surrounds some nerve cell axons. Its hydrolysis releases ceramide and phosphocholine.

Ceramide

Synthesized in the endoplasmic reticulum, the precursor of sphingomyelin. Glucosylceramide is the precursor of glycosphingolipids and is synthesized in the cis-Golgi network.

Schwann cells

The principal glia of the peripheral nervous system that function to support neurons by forming a myelin sheath around axons for insulation. Schwann cells are also important for nerve regeneration.

Synaptotagmin 1

A major type I transmembrane protein enriched in synaptic vesicles that acts as a calcium sensor for regulated exocytosis in central nervous system neurons.

Clathrin-mediated endocytosis

(CME). The internalization of plasma membrane and receptors present therein into small vesicles that is mediated by a protein coat containing clathrin, adaptors and accessory proteins. During endocytosis clathrin triskelia polymerize into hexagons and pentagons to promote endocytic vesicle formation.

Phox homology (PX) domain

A structurally conserved phosphoinositide-binding domain consisting of approximately 120 amino acids found in a wide range of proteins.

Dynamin

A large mechanochemical GTPase that oligomerizes at the neck of endocytic vesicles or tubules to promote membrane fission.

Pleckstrin homology (PH) domain

Sequence of approximately 100 amino acids that can mediate specific binding to phosphoinositide lipids and that is present in many signalling molecules. Only a minority of PH domains actually bind lipids, with the PH domain representing a conserved structural fold in proteins without necessarily a specific biological function.

Macropinocytosis

An evolutionarily conserved endocytic pathway that allows internalization of extracellular fluid via large endocytic vesicles called ‘macropinosomes’.

Nucleation-promoting factors

Factors such as WASP, N-WASP and Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) that stimulate the intrinsically low activity of the ARP2/3 complex to nucleate actin filaments.

ARP2/3 complex

Actin-related protein 2/3 complex, a seven-subunit protein complex that acts to promote the nucleation of branched actin filaments in eukaryotic cells.

CLIC–GEEC pathway

A major clathrin-independent pinocytic pathway mediated by uncoated tubulovesicular carriers called ‘clathrin-independent carriers’ (CLICs) that mature into tubular early endocytic compartments called ‘glycosylphosphatidylinositol-anchored protein enriched compartments’ (GEECs).

Multivesicular bodies

An alternative term for RAB7-positive late endosomes that form by inward budding of vesicles into the endosome lumen.

Retromer

An evolutionarily conserved heterotetrameric complex involved in recycling of cargo from endosomes. It is composed of a membrane-associated sorting nexin (SNX3 or SNX27), and a vacuolar protein sorting trimer containing VPS26, VPS29 and VPS35.

Retriever

Structurally and functionally related to retromer, the retriever complex comprises sorting nexin 17 (SNX17) and the CCC complex.

ESCPE-1

Endosomal sorting nexin (SNX)–Bin–Amphiphysin–Rvs (BAR) sorting complex for promoting exit 1, a heterodimer of either SNX5 or SNX6 with either SNX1 or SNX2 that mediates retrieval of a subset of cargoes independently of retromer.

Charcot–Marie–Tooth disease

A group of hereditary motor and sensory neuropathies that damage the peripheral nerves. Charcot–Marie–Tooth disease type 4B is a rare subtype of the disease caused by mutations in the phosphoinositide 3-phosphatase myotubularin-related protein 2 (MTMR2).

Primary cilia

Non-motile type of cilia comprising an axoneme of nine doublet microtubules that are found on nearly all eukaryotic cells and function as microscopic sensory antennae.

X-linked centronuclear myopathy

A severe human disease characterized by muscle fibre defects that result from mutations in the gene encoding the phosphoinositide 3-phosphatase myotubularin 1 (MTM1).

FYVE domain

A phosphatidylinositol 3-phosphate-binding domain of approximately 60–65 amino acids that is named after the four cysteine-rich proteins FAB1, YOTB, VAC1 and EEA1, in which it has been found.

PIKfyve

An evolutionarily conserved complex comprising the lipid kinase PIKfyve, the scaffold protein VAC14, and the putative 5-phosphatase FIG4. It mediates synthesis of lysosomal phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate in eukaryotic cells.

Mechanistic target of rapamycin complex 1

(mTORC1). A multiprotein assembly composed of the kinase mTOR, a distant relative of the phosphatidylinositol 3-kinases, regulatory associated protein of mTOR (Raptor), mammalian lethal with SEC13 protein 8 (MLST8) and DEP domain-containing mTOR-interacting protein (DEPTOR) that promotes anabolism.

PROPPIN domain

β-Propeller that binds polyphosphoinositides, a domain containing WD40 motifs and that has been identified in autophagy proteins such as yeast Atg18 and mammalian WD repeat domain phosphoinositide-interacting proteins (WIPI proteins). Via its β-propeller fold, it binds bind to phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate.

LC3 family proteins

Proteins comprising microtubule-associated protein 1A/1B light chain 3 (LC3) and the closely related GABARAP proteins; they share structural homology with ubiquitin. They play key roles in autophagy.

Cortactin

An actin nucleation-promoting factor that binds to F-actin filaments and to the ARP2/3 complex to regulate cell shape and movement.

Joubert syndrome

A rare autosomal recessive disorder that is characterized by a distinctive cerebellar and brainstem malformation resulting in ataxia, mental retardation and retina degeneration. Among the genetic causes of the disease are loss-of-function mutations in the phosphoinositide 5-phosphatase INPP5E.

Familial cerebellar atrophy

Cerebellar degeneration caused by inherited gene changes.

Vacuolar ATPase

An ATP-driven proton pump that is closely related to the mitochondrial FoF1-ATPases and that is responsible for the lumenal acidification of endosomes, lysosomes and related organelles.

RAG small GTPases

A unique family of evolutionarily conserved, heterodimeric, lysosome-localized small GTPases that promote anabolic processes through activation of mechanistic target of rapamycin complex 1 signalling in the presence of abundant amino acids.

Hereditary spastic paraplegia

A group of rare inherited disorders that cause weakness and stiffness in the leg muscles.

C2 domains

A membrane-binding domain homologous to the C2 domain of protein kinase C with mostly only moderate lipid specificity. Some C2 domains associate with membranes in a Ca2+-dependent manner.

Store-operated Ca2+ entry

The regulated entry of Ca2+ into cells in response to the depletion of Ca2+ in the endoplasmic reticulum.

FFAT motif

A peptide sequence (with, for example, two phenylalanines in an acidic tract) that binds to VAMP-associated proteins (VAPs) to facilitate the formation of endoplasmic reticulum-based membrane contact sites.

Focal adhesion kinase

(FAK). A cytoplasmic non-receptor tyrosine kinase that localizes to focal adhesions and contributes to integrin-mediated cell signalling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posor, Y., Jang, W. & Haucke, V. Phosphoinositides as membrane organizers. Nat Rev Mol Cell Biol 23, 797–816 (2022). https://doi.org/10.1038/s41580-022-00490-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-022-00490-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing