Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Boolean logic-gated protein presentation through autonomously compiled molecular topology

Abstract

Stimulus-responsive materials have enabled advanced applications in biosensing, tissue engineering and therapeutic delivery. Although controlled molecular topology has been demonstrated as an effective route toward creating materials that respond to prespecified input combinations, prior efforts suffer from a reliance on complicated and low-yielding multistep organic syntheses that dramatically limit their utility. Harnessing the power of recombinant expression, we integrate emerging chemical biology tools to create topologically specified protein cargos that can be site-specifically tethered to and conditionally released from biomaterials following user-programmable Boolean logic. Critically, construct topology is autonomously compiled during expression through spontaneous intramolecular ligations, enabling direct and scalable synthesis of advanced operators. Using this framework, we specify protein release from biomaterials following all 17 possible YES/OR/AND logic outputs from input combinations of three orthogonal protease actuators, multiplexed delivery of three distinct biomacromolecules from hydrogels, five-input-based conditional cargo liberation and logically defined protein localization on or within living mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Autonomously compiled molecular topologies enable Boolean logic-based protein presentation.
Fig. 2: Autonomously assembled logic operators undergo preprogrammed cleavage from bead surfaces in response to actuator input combinations.
Fig. 3: Autonomously compiled molecular topologies enable the multiplexed and independently triggered release of distinct proteins from a hydrogel network.
Fig. 4: Genetic encodability enables seamless scale-up in logical response complexity.
Fig. 5: Boolean logic-based labeling of the mammalian extracellular membrane.
Fig. 6: Autonomous compilation and logic-defined localization within mammalian cells.

Similar content being viewed by others

Data availability

All pertinent experimental and characterization data are available within this paper and its associated Supplementary Information. Plasmids generated during the current study are listed in the Supplementary Information and are available through Addgene. Source data are provided with this paper.

References

  1. Badeau, B. A. & DeForest, C. A. Programming stimuli-responsive behavior into biomaterials. Annu. Rev. Biomed. Eng. 21, 241–265 (2019).

    Article  PubMed  Google Scholar 

  2. Liu, A. P. et al. The living interface between synthetic biology and biomaterial design. Nat. Mater. 21, 390–397 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Narkar, A. R., Tong, Z., Soman, P. & Henderson, J. H. Smart biomaterial platforms: controlling and being controlled by cells. Biomaterials 283, 121450 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rizzo, F. & Kehr, N. S. Recent advances in injectable hydrogels for controlled and local drug delivery. Adv. Healthc. Mater. 10, 2001341 (2021).

    Article  Google Scholar 

  6. Drury, J. L. & Mooney, D. J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003).

    Article  PubMed  Google Scholar 

  7. Malda, J. et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25, 5011–5028 (2013).

    Article  PubMed  Google Scholar 

  8. Aisenbrey, E. A. & Murphy, W. L. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 5, 539–551 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Johnston, T. G. et al. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation. Nat. Commun. 11, 563 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fisher, S. A., Baker, A. E. G. & Shoichet, M. S. Designing peptide and protein modified hydrogels: selecting the optimal conjugation strategy. J. Am. Chem. Soc. 139, 7416–7427 (2017).

    Article  PubMed  Google Scholar 

  12. Shadish, J. A. & DeForest, C. A. Site-selective protein modification: from functionalized proteins to functional biomaterials. Matter 2, 50–77 (2020).

    Article  Google Scholar 

  13. Gharios, R., Francis, R. M. & DeForest, C. A. Chemical and biological engineering strategies to make and modify next-generation hydrogel biomaterials. Matter 6, 4195–4244 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gharios, R., Li, A., Kopyeva, I., Francis, R. M. & DeForest, C. A. One-step purification and N-terminal functionalization of bioactive proteins via atypically split inteins. Bioconjug. Chem. 35, 750–757 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brown, T. E., Marozas, I. A. & Anseth, K. S. Amplified photodegradation of cell-laden hydrogels via an addition–fragmentation chain transfer reaction. Adv. Mater. 29, 1605001 (2017).

    Article  Google Scholar 

  17. Chapla, R., Hammer, J. A. & West, J. L. Adding dynamic biomolecule signaling to hydrogel systems via tethered photolabile cell-adhesive proteins. ACS Biomater. Sci. Eng. 8, 208–217 (2022).

    Article  PubMed  Google Scholar 

  18. Shadish, J. A., Strange, A. C. & DeForest, C. A. Genetically encoded photocleavable linkers for patterned protein release from biomaterials. J. Am. Chem. Soc. 141, 15619–15625 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kilic Boz, R. et al. Redox-responsive hydrogels for tunable and “on-demand” release of biomacromolecules. Bioconjug. Chem. 33, 839–847 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lueckgen, A. et al. Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration. Biomaterials 217, 119294 (2019).

    Article  PubMed  Google Scholar 

  21. Tanimoto, R., Ebara, M. & Uto, K. Tunable enzymatically degradable hydrogels for controlled cargo release with dynamic mechanical properties. Soft Matter 19, 6224–6233 (2023).

    Article  PubMed  Google Scholar 

  22. Ding, H. et al. Preparation and application of pH-responsive drug delivery systems. J. Control. Release 348, 206–238 (2022).

    Article  PubMed  Google Scholar 

  23. Burdick, J. A. & Murphy, W. L. Moving from static to dynamic complexity in hydrogel design. Nat. Commun. 3, 1269 (2012).

    Article  PubMed  Google Scholar 

  24. Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).

    Article  PubMed  Google Scholar 

  25. Manzari, M. T. et al. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 6, 351–370 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Culver, H. R., Clegg, J. R. & Peppas, N. A. Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc. Chem. Res. 50, 170–178 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Herrmann, A., Haag, R. & Schedler, U. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater. 10, 2100062 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ikeda, M. et al. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nat. Chem. 6, 511–518 (2014).

    Article  PubMed  Google Scholar 

  29. Hou, B., et al. Engineering stimuli-activatable Boolean logic prodrug nanoparticles for combination cancer immunotherapy. Adv. Mater. 32, 1907210 (2020).

    Article  Google Scholar 

  30. Zhang, P. et al. A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nat. Chem. 12, 381–390 (2020).

    Article  PubMed  Google Scholar 

  31. Gawade, P. M., Shadish, J. A., Badeau, B. A. & DeForest, C. A. Logic-based delivery of site-specifically modified proteins from environmentally responsive hydrogel biomaterials. Adv. Mater. 31, 1902462 (2019).

    Article  Google Scholar 

  32. Ruskowitz, E. R., Comerford, M. P., Badeau, B. A. & DeForest, C. A. Logical stimuli-triggered delivery of small molecules from hydrogel biomaterials. Biomater. Sci. 7, 542–546 (2019).

    Article  PubMed  Google Scholar 

  33. Badeau, B. A., Comerford, M. P., Arakawa, C. K., Shadish, J. A. & DeForest, C. A. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. 10, 251–258 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thompson, R. E. & Muir, T. W. Chemoenzymatic semisynthesis of proteins. Chem. Rev. 120, 3051–3126 (2020).

    Article  PubMed  Google Scholar 

  35. de la Torre, D. & Chin, J. W. Reprogramming the genetic code. Nat. Rev. Genet. 22, 169–184 (2021).

    Article  PubMed  Google Scholar 

  36. Scott, C. P., Abel-Santos, E., Wall, M., Wahnon, D. C. & Benkovic, S. J. Production of cyclic peptides and proteins in vivo. Proc. Natl Acad. Sci. USA 96, 13638–13643 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Iwai, H., Lingel, A. & Plückthun, A. Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J. Biol. Chem. 276, 16548–16554 (2001).

    Article  PubMed  Google Scholar 

  38. Zhang, W.-B., Sun, F., Tirrell, D. A. & Arnold, F. H. Controlling macromolecular topology with genetically encoded SpyTag–SpyCatcher chemistry. J. Am. Chem. Soc. 135, 13988–13997 (2013).

    Article  PubMed  Google Scholar 

  39. Schoene, C., Bennett, S. P. & Howarth, M. SpyRings declassified: a blueprint for using isopeptide-mediated cyclization to enhance enzyme thermal resilience. Methods Enzymol. 580, 149–167 (2016).

    Article  PubMed  Google Scholar 

  40. Fan, R. & Aranko, A. S. Catcher/Tag toolbox: biomolecular click-reactions for protein engineering beyond genetics. ChemBioChem 25, e202300600 (2024).

    Article  PubMed  Google Scholar 

  41. Qu, Z., Cheng, S. Z. D. & Zhang, W.-B. Macromolecular topology engineering. Trends Chem. 3, 402–415 (2021).

    Article  Google Scholar 

  42. Liu, Y. et al. Mechano-bioconjugation strategy empowering fusion protein therapeutics with aggregation resistance, prolonged circulation, and enhanced antitumor efficacy. J. Am. Chem. Soc. 144, 18387–18396 (2022).

    Article  PubMed  Google Scholar 

  43. Bai, X. et al. Cellular synthesis of protein pretzelanes. Giant 10, 100092 (2022).

    Article  Google Scholar 

  44. Hou, B., Yan, X., He, J., Zhang, W.-B. & Shao, Y. Self-assembly of three-component bolaform giant surfactants with branched architectures. Giant 15, 100165 (2023).

    Article  Google Scholar 

  45. Snoj, J., Lapenta, F. & Jerala, R. Preorganized cyclic modules facilitate the self-assembly of protein nanostructures. Chem. Sci. 15, 3673–3686 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bressler, E. M. et al. Boolean logic in synthetic biology and biomaterials: Towards living materials in mammalian cell therapeutics. Clin. Transl. Med. 13, e1244 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Campbell, B. C. et al. mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. Proc. Natl Acad. Sci. USA 117, 30710–30721 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dorr, B. M., Ham, H. O., An, C., Chaikof, E. L. & Liu, D. R. Reprogramming the specificity of sortase enzymes. Proc. Natl Acad. Sci. USA 111, 13343–13348 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bretherton, R. C., et al. User-controlled 4D biomaterial degradation with substrate-selective sortase transpeptidases for single-cell biology. Adv. Mater. 35, 2209904 (2023).

    Article  Google Scholar 

  50. Kopyeva, I., et al. Stepwise stiffening/softening of and cell recovery from reversibly formulated hydrogel interpenetrating networks. Adv. Mater. 36, 2404880 (2024).

    Article  Google Scholar 

  51. Keeble, A. H. et al. DogCatcher allows loop-friendly protein–protein ligation. Cell Chem. Biol. 29, 339–350 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cabrita, L. D. et al. Enhancing the stability and solubility of TEV protease using in silico design. Protein Sci. 16, 2360–2367 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stevens, A. J. et al. Design of a split intein with exceptional protein splicing activity. J. Am. Chem. Soc. 138, 2162–2165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Thompson, R. E., Stevens, A. J. & Muir, T. W. Protein engineering through tandem transamidation. Nat. Chem. 11, 737–743 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Townend, J. E. & Tavassoli, A. Traceless production of cyclic peptide libraries in E. coli. ACS Chem. Biol. 11, 1624–1630 (2016).

    Article  PubMed  Google Scholar 

  57. Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xu, Q. et al. Catcher/Tag cyclization introduces electrostatic interaction mediated protein–protein interactions to enhance the thermostability of luciferase. Process Biochem. 80, 64–71 (2019).

    Article  Google Scholar 

  59. Sun, F. & Zhang, W.-B. Genetically encoded click chemistry. Chin. J. Chem. 38, 894–896 (2020).

    Article  Google Scholar 

  60. Evans, T. C., Benner, J. & Xu, M.-Q. The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J. Biol. Chem. 274, 18359–18363 (1999).

    Article  PubMed  Google Scholar 

  61. Siebold, C. & Erni, B. Intein-mediated cyclization of a soluble and a membrane protein in vivo: function and stability. Biophys. Chem. 96, 163–171 (2002).

    Article  PubMed  Google Scholar 

  62. Qi, X. & Xiong, S. Intein-mediated backbone cyclization of VP1 protein enhanced protection of CVB3-induced viral myocarditis. Sci. Rep. 7, 41485 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Oliveira-Silva, R. et al. Monitoring proteolytic activity in real time: a new world of opportunities for biosensors. Trends Biochem. Sci. 45, 604–618 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide–alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  PubMed  Google Scholar 

  65. DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nallamsetty, S. et al. Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro. Protein Expr. Purif. 38, 108–115 (2004).

    Article  PubMed  Google Scholar 

  67. Abdelkader, E. H. & Otting, G. NT*-HRV3CP: an optimized construct of human rhinovirus 14 3C protease for high-yield expression and fast affinity-tag cleavage. J. Biotechnol. 325, 145–151 (2021).

    Article  PubMed  Google Scholar 

  68. Qu, Z. et al. A single-domain green fluorescent protein catenane. Nat. Commun. 14, 3480 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Li, T., Zhang, F., Fang, J., Liu, Y. & Zhang, W.-B. Rational design and cellular synthesis of proteins with unconventional chemical topology. Chin. J. Chem. 41, 2873–2880 (2023).

    Article  Google Scholar 

  70. Pruszynski, M., D’Huyvetter, M., Bruchertseifer, F., Morgenstern, A. & Lahoutte, T. Evaluation of an anti-HER2 nanobody labeled with 225Ac for targeted α-particle therapy of cancer. Mol. Pharm. 15, 1457–1466 (2018).

    Article  PubMed  Google Scholar 

  71. Burgstaller, S. et al. Monitoring extracellular ion and metabolite dynamics with recombinant nanobody-fused biosensors. iScience 25, 104907 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Roberts, P. J. et al. Rho family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J. Biol. Chem. 283, 25150–25163 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Szymczak, A. L. et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  PubMed  Google Scholar 

  74. Vizovišek, M., Fonović, M. & Turk, B. Cysteine cathepsins in extracellular matrix remodeling: extracellular matrix degradation and beyond. Matrix Biol. 75–76, 141–159 (2019).

    Article  PubMed  Google Scholar 

  75. Zhang, W. et al. Optogenetic control with a photocleavable protein, PhoCl. Nat. Methods 14, 391–394 (2017).

    Article  PubMed  Google Scholar 

  76. Dang, B. et al. SNAC-tag for sequence-specific chemical protein cleavage. Nat. Methods 16, 319–322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019).

    Article  PubMed  Google Scholar 

  78. Nguyen, D. P. et al. Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J. Am. Chem. Soc. 136, 2240–2243 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen, Z. et al. Programmable design of orthogonal protein heterodimers. Nature 565, 106–111 (2019).

    Article  PubMed  Google Scholar 

  80. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Francis and A. Garcia for collaborating on designing and validating the SpyCatcher-azide, C. Yang and R. Brady for synthesizing and supplying PEG-tetraBCN and J. Davis for gifting HEK293T cells (previously obtained from the ATCC, CRL-3216). We acknowledge support from D. Whittington at the University of Washington MS Center. Part of this work was conducted with instrumentation provided by the Joint Center for Deployment and Research in Earth Abundant Materials. This work was supported by a grant (DMR 1807398, C.A.D.) from the National Science Foundation and a Maximizing Investigators’ Research Award (R35GM138036, C.A.D.) from the National Institutes of Health. Student support was further provided through a John C. Berg Endowed Fellowship (R.G.), the National Science Foundation (DGE-2140004, M.L.R.), a Goldwater Scholarship (A.L.), a Washington NASA Space Grant (A.L), a University of Washington MEM-C Academic-Year Research Accelerator Fellowship (A.L) and a University of Washington Mary Gates Endowment for Students (S.P.K.).

Author information

Authors and Affiliations

Authors

Contributions

R.G., M.L.R., and C.A.D. conceptualized and designed the experiments. R.G., M.L.R., A.L., S.P.K. and J.H. performed the experiments. R.G., M.L.R., A.L., S.P.K., J.H. and C.A.D. analyzed the data. C.A.D. prepared the main text figures with input from R.G. and M.L.R. C.A.D. and M.L.R. prepared the supplementary figures with input from R.G. R.G., M.L.R. and C.A.D. wrote the paper with input from all other authors.

Corresponding author

Correspondence to Cole A. DeForest.

Ethics declarations

Competing interests

C.A.D., R.G. and M.L.R. have filed a patent application (PCT/US2025/031504) related to the work described in this article. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Karthik Raman, Laura Sabio, Manuel Salmeron-Sanchez and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Mass spectrometric validation of logically releasable mGreenLantern.

a, YES-gated single-input tethers. b-c, Two-input (b) OR-gated and (c) AND-gated tethers. d-g, Three-input (d) OR/(AND)-, (e) AND/(OR)-, (f) OR/OR-, and (g) AND/AND-gated tethers. Plot titles correspond to the protein tether identity.

Source data

Extended Data Fig. 2 SDS-PAGE analysis of in-solution treatment of autonomously compiled mGreenLantern pendants.

a, mGreenLantern-A(ST) is differentially cleaved following the 8 possible input combinations of A, S, and T. Input conditions A, S, T, and ST are expected to linearize the product but not induce payload release, leading to a product with less electrophoretic mobility than the initial cyclic construct. Payload release is expected following input conditions AS, AT, and AST, accompanied with a product band that migrates further than the starting species. b, Changes in topology and/or molecular weight in response to a specific set of inputs leads to changes in protein electrophoretic mobility, which can be analyzed through gel densitometry. c, The response profiles of the YES-gated single-input tethers. d-e, The response profiles of the two-input (d) OR-gated and (e) AND-gated tethers. f-h, The response profiles of the three-input (f) OR/(AND)-, (g) AND/(OR)-, and (h) OR/OR-gated tethers. Plot titles correspond to the protein tether identity; the y-axis represents extent of cleavage as measured through migration on an SDS-PAGE with gel densitometry analysis; the x-axis indicates treatment conditions, wherein N indicates no treatment, A indicates eSrtA(2A9), S indicates eSrtA(4S9), and T indicates TEV. Green bars indicate conditions expected to yield tether cleavage, whereas red bars indicate conditions expected to keep the tether non-cleaved. Error bars correspond to ±1 standard deviation about the mean with propagated uncertainties for n = 3 experimental replicates.

Source data

Extended Data Fig. 3 SDS-PAGE analysis of in-solution treatment of autonomously compiled mCherry and mCerulean pendants.

a-c, Changes in topology and/or molecular weight in response to a specific set of inputs leads to changes in protein electrophoretic mobility, which can be analyzed through gel densitometry. Results are shown for species (a) mCherry-S, (b) mCerulean-T, and (c) mCerulean-ST. Plot titles correspond to the protein tether identity; the y-axis represents extent of cleavage as measured through migration on an SDS-PAGE with gel densitometry analysis; the x-axis indicates treatment conditions, wherein N indicates no treatment, A indicates eSrtA(2A9), S indicates eSrtA(4S9), and T indicates TEV. Error bars correspond to ±1 standard deviation about the mean with propagated uncertainties for n = 3 experimental replicates.

Source data

Extended Data Fig. 4 Multiplexed YES-gated release of proteins from hydrogel biomaterials.

a, mGreenLantern-A, mCherry-S, and mCerulean-T are tethered homogenously into an underlying PEG-based hydrogel network via SpyLigation, each exhibiting a different YES-gated response. b, Appropriate proteins are individually released when their corresponding input is present. Fully colored bars (green for mGreenLantern, red for mCherry, blue for mCerulean) indicate conditions expected to yield protein release, whereas opaque colored bars denote conditions not expected to result in release. Error bars correspond to ±1 standard deviation about the mean with propagated uncertainties for n = 3 experimental replicates.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Methods.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Figs. 3, 4, 11 and 14.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharios, R., Ross, M.L., Li, A. et al. Boolean logic-gated protein presentation through autonomously compiled molecular topology. Nat Chem Biol 21, 1981–1991 (2025). https://doi.org/10.1038/s41589-025-02037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-025-02037-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research