Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibitory probes for spatiotemporal analysis of Gαs protein signaling

Abstract

s serves as the prototypical signal transducer for G-protein-coupled receptors (GPCRs) and is the heterotrimeric G protein most frequently mutated in cancer. The classical view of the plasma membrane as the only cellular location where GPCR signal transduction occurs has been challenged by evidence suggesting that Gs also signals from intracellular compartments. However, progress on this topic has stalled because of insufficient approaches with adequate spatiotemporal resolution. Here we describe genetically encoded probes and cell-penetrating compounds that block the effector-binding site of active Gαs in cells to prevent signal propagation at discrete subcellular locations, at user-specified times and across diverse experimental conditions. Using these tools, we show direct evidence of Gαs-mediated signaling on intracellular organelles, unique spatiotemporal features of signaling by Gαs oncomutants and specific regulation of physiologically relevant responses in cardiac or immune cells. These findings pave the way to harnessing the spatiotemporal modulation of Gs signaling and its untapped therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GαsBP1 and GαsBP2 selectively bind to the α3/SwII groove of active Gαs.
Fig. 2: GαsBP2 specifically inhibits Gαs-mediated activation of AC.
Fig. 3: Subcellular resolution of Gαs inhibition with GαsBP2 probes.
Fig. 4: GαsBP2 targeted either to the plasma membrane or to the cytosol blocks signaling by GTP-bound Gαs-R201C.
Fig. 5: Mem-GαsBP2 promotes the sequestration of Gαs-R201C into an inactive complex with Gβγ at the plasma membrane.
Fig. 6: α-Sintide, a synthetic Gαs inhibitor cyclic peptide, efficiently blocks signaling across different receptors and cell types.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discovery 16, 829–842 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Ross, E. M. & Gilman, A. G. Reconstitution of catecholamine-sensitive adenylate cyclase activity: interactions of solubilized components with receptor-replete membranes. Proc. Natl Acad. Sci. USA 74, 3715–3719 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ross, E. M., Howlett, A. C., Ferguson, K. M. & Gilman, A. G. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J. Biol. Chem. 253, 6401–6412 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, V. et al. Illuminating the Onco-GPCRome: novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J. Biol. Chem. 294, 11062–11086 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patra, K. C. et al. Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nat. Cell Biol. 20, 811–822 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ideno, N. et al. GNASR201C induces pancreatic cystic neoplasms in mice that express activated KRAS by inhibiting YAP1 signaling. Gastroenterology 155, 1593–1607 e1512 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Ramms, D. J. et al. Gαs–protein kinase A (PKA) pathway signalopathies: the emerging genetic landscape and therapeutic potential of human diseases driven by aberrant Gαs–PKA signaling. Pharmacol. Rev. 73, 155–197 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, V. H. et al. The GPCR–Gα–PKA signaling axis promotes T cell dysfunction and cancer immunotherapy failure. Nat. Immunol. 24, 1318–1330 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu, J. et al. Tumour immune rejection triggered by activation of α2-adrenergic receptors. Nature 618, 607–615 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Irannejad, R. & von Zastrow, M. GPCR signaling along the endocytic pathway. Curr. Opin. Cell Biol. 27, 109–116 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Bock, A., Irannejad, R. & Scott, J. D. cAMP signaling: a remarkably regional affair. Trends Biochem. Sci. 49, 305–317 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calebiro, D., Miljus, T. & O’Brien, S. Endomembrane GPCR signaling: 15 years on, the quest continues. Trends Biochem. Sci. 50, 46–60 (2025).

    Article  CAS  PubMed  Google Scholar 

  13. Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calebiro, D. et al. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol. 7, e1000172 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Sutkeviciute, I. & Vilardaga, J. P. Structural insights into emergent signaling modes of G protein-coupled receptors. J. Biol. Chem. 295, 11626–11642 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Irannejad, R., Tsvetanova, N. G., Lobingier, B. T. & von Zastrow, M. Effects of endocytosis on receptor-mediated signaling. Curr. Opin. Cell Biol. 35, 137–143 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwon, Y. et al. Non-canonical β-adrenergic activation of ERK at endosomes. Nature 611, 173–179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stoeber, M. et al. A genetically encoded biosensor reveals location bias of opioid drug action. Neuron 98, 963–976 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wright, S. C. et al. BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated Gq activation at early endosomes. Proc. Natl Acad. Sci. USA 118, e2025846118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eiger, D. S. et al. Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nat. Commun. 13, 5846 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsvetanova, N. G. & von Zastrow, M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat. Chem. Biol. 10, 1061–1065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Godbole, A., Lyga, S., Lohse, M. J. & Calebiro, D. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nat. Commun. 8, 443 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Klauer, M. J., Willette, B. K. A. & Tsvetanova, N. G. Functional diversification of cell signaling by GPCR localization. J. Biol. Chem. 300, 105668 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Willette, B. K. A., Zhang, J. F., Zhang, J. & Tsvetanova, N. G. Endosome positioning coordinates spatially selective GPCR signaling. Nat. Chem. Biol. 20, 151–161 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Lin, T. Y. et al. Cardiac contraction and relaxation are regulated by distinct subcellular cAMP pools. Nat. Chem. Biol. 20, 62–73 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Irannejad, R. et al. Functional selectivity of GPCR-directed drug action through location bias. Nat. Chem. Biol. 13, 799–806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. White, A. D. et al. Ca2+ allostery in PTH-receptor signaling. Proc. Natl Acad. Sci. USA 116, 3294–3299 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. White, A. D. et al. Spatial bias in cAMP generation determines biological responses to PTH type 1 receptor activation. Sci. Signal. 14, eabc5944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wedegaertner, P. B., Bourne, H. R. & von Zastrow, M. Activation-induced subcellular redistribution of Gs alpha. Mol. Biol. Cell 7, 1225–1233 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jang, W., Senarath, K., Feinberg, G., Lu, S. & Lambert, N. A. Visualization of endogenous G proteins on endosomes and other organelles. eLife 13, RP97033 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin, B. R. & Lambert, N. A. Activated G protein Gαs samples multiple endomembrane compartments. J. Biol. Chem. 291, 20295–20302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pizzoni, A., Zhang, X. & Altschuler, D. L. From membrane to nucleus: a three-wave hypothesis of cAMP signaling. J. Biol. Chem. 300, 105497 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Thiyagarajan, M. M. et al. Activation-induced subcellular redistribution of Gαs is dependent upon its unique N-terminus. Biochemistry 41, 9470–9484 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Lazar, A. M. et al. G protein-regulated endocytic trafficking of adenylyl cyclase type 9. eLife 9, e58039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thomsen, A. R. B. et al. GPCR–G protein–β-arrestin super-complex mediates sustained G protein signaling. Cell 166, 907–919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krumins, A. M. & Gilman, A. G. Targeted knockdown of G protein subunits selectively prevents receptor-mediated modulation of effectors and reveals complex changes in non-targeted signaling proteins. J. Biol. Chem. 281, 10250–10262 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Burghi, V. et al. Gαs is dispensable for β-arrestin coupling but dictates GRK selectivity and is predominant for gene expression regulation by β2-adrenergic receptor. J. Biol. Chem. 299, 105293 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takasaki, J. et al. A novel Gαq/11-selective inhibitor. J. Biol. Chem. 279, 47438–47445 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Schrage, R. et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 6, 10156 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Kostenis, E., Pfeil, E. M. & Annala, S. Heterotrimeric Gq proteins as therapeutic targets? J. Biol. Chem. 295, 5206–5215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pfeil, E. M. et al. Heterotrimeric G protein subunit Gαq is a master switch for Gβγ-mediated calcium mobilization by Gi-coupled GPCRs. Mol. Cell 80, 940–954 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Dai, S. A. et al. State-selective modulation of heterotrimeric Gαs signaling with macrocyclic peptides. Cell 185, 3950–3965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Janicot, R. et al. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. Cell 187, 1527–1546 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berman, D. M., Wilkie, T. M. & Gilman, A. G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein α subunits. Cell 86, 445–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Tesmer, J. J., Berman, D. M., Gilman, A. G. & Sprang, S. R. Structure of RGS4 bound to AlF4-activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Waldo, G. L. et al. Kinetic scaffolding mediated by a phospholipase C-β and Gq signaling complex. Science 330, 974–980 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luebbers, A. et al. Dissecting the molecular basis for the modulation of neurotransmitter GPCR signaling by GINIP. Structure 32, 47–59 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Garcia-Marcos, M. Heterotrimeric G protein signaling without GPCRs: the Gα-binding-and-activating (GBA) motif. J. Biol. Chem. 300, 105756 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kimple, R. J., Kimple, M. E., Betts, L., Sondek, J. & Siderovski, D. P. Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits. Nature 416, 878–881 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Tesmer, J. J., Sunahara, R. K., Gilman, A. G. & Sprang, S. R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with G·GTPγS. Science 278, 1907–1916 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Hollins, B., Kuravi, S., Digby, G. J. & Lambert, N. A. The C-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers. Cell. Signal. 21, 1015–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Masuho, I. et al. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci Signal 8, ra123 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Masuho, I. et al. A global map of G protein signaling regulation by RGS proteins. Cell 183, 503–521 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. DiGiacomo, V. et al. Probing the mutational landscape of regulators of G protein signaling proteins in cancer. Sci. Signal. 13, eaax8620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lambert, N. A. et al. Regulators of G-protein signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity. Proc. Natl Acad. Sci. USA 107, 7066–7071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Inoue, T., Heo, W. D., Grimley, J. S., Wandless, T. J. & Meyer, T. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat. Methods 2, 415–418 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cullum, S. A., Veprintsev, D. B. & Hill, S. J. Kinetic analysis of endogenous β2-adrenoceptor-mediated cAMP GloSensor responses in HEK293 cells. Br. J. Pharmacol. 180, 1304–1315 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Edwards, S. R. & Wandless, T. J. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain. J. Biol. Chem. 282, 13395–13401 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Liang, F. S., Ho, W. Q. & Crabtree, G. R. Engineering the ABA plant stress pathway for regulation of induced proximity. Sci. Signal. 4, rs2 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vilardaga, J. P. et al. Molecular mechanisms of PTH/PTHrP class B GPCR signaling and pharmacological implications. Endocr. Rev. 44, 474–491 (2023).

    Article  PubMed  Google Scholar 

  62. Wedegaertner, P. B. & Bourne, H. R. Activation and depalmitoylation of G. Cell 77, 1063–1070 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Hu, Q. & Shokat, K. M. Disease-causing mutations in the G protein Gαs subvert the roles of GDP and GTP. Cell 173, 1254–1264 e1211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Digby, G. J., Lober, R. M., Sethi, P. R. & Lambert, N. A. Some G protein heterotrimers physically dissociate in living cells. Proc. Natl Acad. Sci. USA 103, 17789–17794 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Evanko, D. S., Thiyagarajan, M. M., Takida, S. & Wedegaertner, P. B. Loss of association between activated Gαq and Gβγ disrupts receptor-dependent and receptor-independent signaling. Cell. Signal. 17, 1218–1228 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Hewitt, N. et al. Catalytic site mutations confer multiple states of G protein activation. Sci. Signal. 16, eabq7842 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chidiac, P. & Ross, E. M. Phospholipase C-β1 directly accelerates GTP hydrolysis by Gαq and acceleration is inhibited by Gβγ subunits. J. Biol. Chem. 274, 19639–19643 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Simonds, W. F., Butrynski, J. E., Gautam, N., Unson, C. G. & Spiegel, A. M. G-protein βγ dimers. Membrane targeting requires subunit coexpression and intact γ C-A-A-X domain. J. Biol. Chem. 266, 5363–5366 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Takida, S. & Wedegaertner, P. B. Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gbetagamma. J. Biol. Chem. 278, 17284–17290 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Brooks, H., Lebleu, B. & Vivès, E. TAT peptide-mediated cellular delivery: back to basics. Adv. Drug Deliv. Rev. 57, 559–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Rohrer, D. K. et al. Targeted disruption of the mouse β1-adrenergic receptor gene: developmental and cardiovascular effects. Proc. Natl Acad. Sci. USA 93, 7375–7380 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chruscinski, A. J. et al. Targeted disruption of the β2 adrenergic receptor gene. J. Biol. Chem. 274, 16694–16700 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Eichel, K. & von Zastrow, M. Subcellular organization of GPCR signaling. Trends Pharmacol. Sci. 39, 200–208 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Buxton, I. L. & Brunton, L. L. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J. Biol. Chem. 258, 10233–10239 (1983).

    Article  CAS  PubMed  Google Scholar 

  75. Wei, W. & Smrcka, A. V. Internalized β2-adrenergic receptors oppose PLC-dependent hypertrophic signaling. Circ. Res. 135, e24–e38 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liccardo, F. et al. Subcellular activation of β-adrenergic receptors using a spatially restricted antagonist. Proc. Natl Acad. Sci. USA 121, e2404243121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Walker, A. R. et al. Constitutive internalisation of EP2 differentially regulates G protein signalling. J. Mol. Endocrinol. 73, e230153 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Steinberg, S. F. β2-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts. J. Mol. Cell. Cardiol. 37, 407–415 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Nash, C. A., Wei, W., Irannejad, R. & Smrcka, A. V. Golgi localized β1 -adrenergic receptors stimulate Golgi PI4P hydrolysis by PLCε to regulate cardiac hypertrophy. eLife 8, e48167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kotowski, S. J., Hopf, F. W., Seif, T., Bonci, A. & von Zastrow, M. Endocytosis promotes rapid dopaminergic signaling. Neuron 71, 278–290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Blythe, E. E. & von Zastrow, M. β-Arrestin-independent endosomal cAMP signaling by a polypeptide hormone GPCR. Nat. Chem. Biol. 20, 323–332 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Sposini, S. et al. Integration of GPCR signaling and sorting from very early endosomes via opposing APPL1 mechanisms. Cell Rep. 21, 2855–2867 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, Y. et al. Intracellular β1-adrenergic receptors and organic cation transporter 3 mediate phospholamban phosphorylation to enhance cardiac contractility. Circ. Res. 128, 246–261 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Wehbi, V. L. et al. Noncanonical GPCR signaling arising from a PTH receptor–arrestin–Gβγ complex. Proc. Natl Acad. Sci. USA 110, 1530–1535 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. White, A. D. et al. Gq/11-dependent regulation of endosomal cAMP generation by parathyroid hormone class B GPCR. Proc. Natl Acad. Sci. USA 117, 7455–7460 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Feinstein, T. N. et al. Retromer terminates the generation of cAMP by internalized PTH receptors. Nat. Chem. Biol. 7, 278–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jean-Alphonse, F. G. et al. β2-adrenergic receptor control of endosomal PTH receptor signaling via Gβγ. Nat. Chem. Biol. 13, 259–261 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Smith, J. S. et al. Noncanonical scaffolding of Gαi and β-arrestin by G protein-coupled receptors. Science 371, eaay1833 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xiong, X. F. et al. Total synthesis and structure–activity relationship studies of a series of selective G protein inhibitors. Nat. Chem. 8, 1035–1041 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rajendran, L. et al. Efficient inhibition of the Alzheimer’s disease β-secretase by membrane targeting. Science 320, 520–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Chojnacki, J. E., Scheinost, L., Wang, Y. & Kohn, M. Membrane targeting with palmitoylated lysine added to PP1-disrupting peptide induces PP1-independent signaling. J. Pept. Sci. 29, e3469 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Weinberg, Z. Y., Crilly, S. E. & Puthenveedu, M. A. Spatial encoding of GPCR signaling in the nervous system. Curr. Opin. Cell Biol. 57, 83–89 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Digby, G. J., Sethi, P. R. & Lambert, N. A. Differential dissociation of G protein heterotrimers. J. Physiol. 586, 3325–3335 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Touhara, K. K. & MacKinnon, R. Molecular basis of signaling specificity between GIRK channels and GPCRs. eLife 7, e42908 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Leyme, A. et al. Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proc. Natl Acad. Sci. USA 114, E10319–E10328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Natochin, M. & Artemyev, N. O. A single mutation Asp229–>Ser confers upon Gsα the ability to interact with regulators of G protein signaling. Biochemistry 37, 13776–13780 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Park, J.-C. et al. Fine-tuning GPCR-mediated neuromodulation by biasing signaling through different G protein subunits. Mol. Cell 83, 2540–2558 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qin, K., Dong, C., Wu, G. & Lambert, N. A. Inactive-state preassembly of Gq-coupled receptors and Gq heterotrimers. Nat. Chem. Biol. 7, 740–747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tang, Y. et al. Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the β1-adrenergic receptor. Proc. Natl Acad. Sci. USA 96, 12559–12564 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Iiri, T., Backlund, P. S., Jones, T. L. Z., Wedegaertner, P. B. & Bourne, H. R. Reciprocal regulation of Gsα by palmitate and the βγ subunit. Proc. Natl Acad. Sci. USA 93, 14592–14597 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Oner, S. S. et al. Regulation of the AGS3·Gαi signaling complex by a seven-transmembrane span receptor. J. Biol. Chem. 285, 33949–33958 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yano, H. et al. Development of novel biosensors to study receptor-mediated activation of the G-protein α subunits Gs and Golf. J. Biol. Chem. 292, 19989–19998 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Marivin, A. et al. Dominant-negative Gα subunits are a mechanism of dysregulated heterotrimeric G protein signaling in human disease. Sci. Signal. 9, ra37 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yost, E. A., Mervine, S. M., Sabo, J. L., Hynes, T. R. & Berlot, C. H. Live cell analysis of G protein β5 complex formation, function, and targeting. Mol. Pharmacol. 72, 812–825 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Maziarz, M. et al. Revealing the activity of trimeric G-proteins in live cells with a versatile biosensor design. Cell 182, 770–785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fenech, C. et al. Ric-8A, a Gα protein guanine nucleotide exchange factor potentiates taste receptor signaling. Front. Cell. Neurosci. 3, 11 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Garcia-Marcos, M. Complementary biosensors reveal different G-protein signaling modes triggered by GPCRs and non-receptor activator. eLife 10, e65620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nikolaev, V. O., Bunemann, M., Hein, L., Hannawacker, A. & Lohse, M. J. Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem. 279, 37215–37218 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Parag-Sharma, K. et al. Membrane recruitment of the non-receptor protein GIV/Girdin (Gα-interacting, vesicle-associated protein/Girdin) is sufficient for activating heterotrimeric G protein signaling. J. Biol. Chem. 291, 27098–27111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. DiGiacomo, V. et al. The Gαi–GIV binding interface is a druggable protein–protein interaction. Sci. Rep. 7, 8575 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. de Opakua, A. I. et al. Molecular mechanism of Gαi activation by non-GPCR proteins with a Gα-binding and activating motif. Nat. Commun. 8, 15163 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Leyme, A., Marivin, A., Casler, J., Nguyen, L. T. & Garcia-Marcos, M. Different biochemical properties explain why two equivalent Gα subunit mutants cause unrelated diseases. J. Biol. Chem. 289, 21818–21827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Marivin, A. et al. DAPLE protein inhibits nucleotide exchange on Gαs and Gαq via the same motif that activates Gαi. J. Biol. Chem. 295, 2270–2284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Garcia-Marcos, M., Ghosh, P., Ear, J. & Farquhar, M. G. A structural determinant that renders Gαi sensitive to activation by GIV/Girdin is required to promote cell migration. J. Biol. Chem. 285, 12765–12777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dessauer, C. W., Tesmer, J. J., Sprang, S. R. & Gilman, A. G. Identification of a Giα binding site on type V adenylyl cyclase. J. Biol. Chem. 273, 25831–25839 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Longo, P. A., Kavran, J. M., Kim, M. S. & Leahy, D. J. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 529, 227–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Vilardaga, J. P. Studying ligand efficacy at G protein-coupled receptors using FRET. Methods Mol. Biol. 756, 133–148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was primarily funded by National Institutes of Health (NIH) grants R35GM156286 and R21NS127065 (to M.G-M). Work by R.I. was funded by NIH grant R35GM133521. Work by X.V. was funded by NIH grants R01HL124392 and NIH R01DE033519. Research by J.-P.V. was funded by NIH grants R01DK116780 and R21-DE032478, as well as by the US Department of Veterans Affairs (VA) under grant I01BX006371. S.S. was supported by NIH fellowship F31DK136222. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the VA.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and M.G.-M. designed the majority of the experiments. J.Z. conducted and analyzed the majority of the experiments. A.L., M.M. and M.G.-M. contributed to designing, conducting and analyzing some of the experiments with purified proteins. R.J., E.G., A.W. and A.S. contributed to designing, conducting and analyzing some of the cell-based experiments involving BRET and/or gene expression analysis. S.S. and J.-P.V. designed, conducted and analyzed experiments to assess PTH signaling by FRET. T.-Y.L. and R.I. designed, conducted and analyzed experiments in cardiomyocytes. J.Z., N.C. and X.V. designed, conducted and analyzed experiments in T cells. J.Z., X.V., R.I., J.-P.V. and M.G-M. designed experiments and analyzed data. J.Z. and M.G-M. wrote the paper with input from all authors. M.G-M. conceptualized and supervised the project.

Corresponding author

Correspondence to Mikel Garcia-Marcos.

Ethics declarations

Competing interests

Boston University has filed a provisional patent (US Patent application no. 63/932,172) on behalf of M.G.-M. related to peptides described in this manuscript. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Evi Kostenis, Jorge Gutkind and the other, anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 GαsBP1 and GαsBP2 binding to different Gα subunits in cells.

(A) Diagram showing the design of the BRET assay to measure binding of Nluc-fused peptides to active (QL mutant) or inactive (WT) Gα subunits fused to YFP. (B) GαsBP1 and GαsBP2 specifically bind to the active form of Gαs. BRET measurements were carried out in HEK293T cells co-expressing Nluc-fused plasma membrane anchored GαsBP1 (mas-GαsBP1) or GαsBP2 (mas-GαsBP2) with either Venus-fused Gαs wild-type (WT) or the constitutively active mutant Q227L (QL). Results are presented as the ratio between luminescence at 535 nm and 450 nm (“BRET ratio (535/450 nm)”). Mean ± S.E.M. (n = 3 independent experiments). (C) Diagram depicting the investigation of G protein specificity for GαsBP1 and GαsBP2 (D-H) GαsBP2 does not bind to any of the Gα subunits tested, whereas GαsBP1 binds to Gαi3. BRET measurements were carried out in HEK293T cells co-expressing Nluc-fused mas-GαsBP1, mas-GαsBP2, mas-KB1753 (in D, E and F), mas-GRKRH (in G), or mas-PRGRH (in H), with either wild-type (WT) or constitutively active (QL) mutants of Gαi3 (in D), Gαo (in E), Gαz (in F), Gαq (in G), or Gα13 (in H) fused to a YFP, as indicated. Results are presented as the ratio between luminescence at 535 nm and 450 nm (“BRET ratio (535/450 nm)”). Mean ± S.E.M. (n = 3-6 independent experiments).

Source data

Extended Data Fig. 2 GαsBP2 accelerates the re-association of Gβγ with Gαs after GPCR signaling termination.

(A) mem-GαsBP2 does not affect Gαs-Gβγ association prior to GPCR stimulation, but accelerates Gβγ binding to Gαs after GPCR signal termination. Diagram on the left corresponds to the BRET-based assay to measure free Gβγ and the mechanism investigated with GαsBP2 probes. Graphs in the middle correspond to BRET measurements in HEK293T cells co-expressing a BRET-based biosensor for free Gβγ and different amounts of mem-GαsBP2 WT or mem-GαsBP2 W11A, as indicated. Changes in BRET before β2AR stimulation compared to the condition without GαsBP2 (“ΔBRET (no GαsBP2)”) are shown in the graphs on the left, and real-time changes in BRET upon isoproterenol (agonist)/ alprenolol (antagonist) treatment compared to the unstimulated baseline (“ΔBRET (baseline)”) are shown in the graphs on the right. Mean ± S.E.M. (n = 4-5 independent experiments). Immunoblots on the right correspond to representative results of experiments confirming the expression of mem-GαsBP2 and BRET sensor components. (B) mem-GαsBP2 does not affect the efficacy or potency of isoproterenol on Gβγ responses. Diagram on the left corresponds to the BRET-based assay to measure free Gβγ and the mechanism investigated with GαsBP2 probes. Graphs correspond to BRET measurements in HEK293T cells co-expressing a BRET-based biosensor for free Gβγ and the indicated amounts of mem-GαsBP2 were stimulated with the indicated concentrations of isoproterenol. The changes in BRET upon isoproterenol stimulation compared to the unstimulated condition (“ΔBRET·103 (no agonist)”) are shown on the left graph, the maximal response (“maximum ΔBRET ·103”) is shown on the middle graph, and the negative logarithm of half-maximal effective concentration (pEC50) is shown on the right graph. Mean ± S.E.M. (n = 3 independent experiments). ns, p > 0.05 by one-way ANOVA corrected for multiple comparisons (Dunnett). (C) cyto-GαsBP2 accelerates Gβγ binding to Gαs after GPCR signal termination, whereas the GαsBP2 W11A mutant has no effect. Diagram on the left corresponds to the BRET-based assay to measure free Gβγ and the mechanism investigated with GαsBP2 probes Real-time changes in BRET compared to the unstimulated baseline (“ΔBRET (baseline)”) were measured in HEK293T cells expressing a BRET-based biosensor for free Gβγ co-transfected with 500 ng of plasmid DNA for cyto-GαsBP2 WT, mem-GαsBP2 WT, or their corresponding W11A mutants, upon isoproterenol (agonist)/ alprenolol (antagonist) treatment. Mean ± S.E.M. (n = 4 independent experiments). Immunoblots on the right correspond to representative results of experiments confirming the expression of GαsBP2 constructs and BRET sensor components.

Source data

Extended Data Fig. 3 Temporally resolved inhibition of Gαs signaling in cells via chemically controlled GαsBP2 probes.

(A) Rapamycin-induced recruitment of GαsBP2 to membranes blocks GPCR-stimulated AC activity. Diagram on the left depicts the recruitment of a GαsBP2 probe to the plasma membrane upon rapamycin stimulation to block Gαs-AC signaling. Graphs with kinetic traces in the middle correspond to luminescence-based cAMP measurements in HEK293T cells expressing FKBP-GαsBP2 and membrane-anchored FRB, or mem-GαsBP2 upon stimulation with isoproterenol in the presence or absence of rapamycin pre-treatment, as indicated. The bar graph corresponds to the quantification of the area under the curve (AUC) from the kinetic response curves. Mean ± S.E.M. (n = 4 independent experiments). ns, p > 0.05, ***p < 0.005 by paired, two-tailed Student’s t-test. Immunoblots on the right correspond to representative results of experiments confirming the expression of GαsBP2 constructs, membrane-anchored FRB, and G proteins. (B) Acute, rapamycin-induced recruitment of GαsBP2 to membranes rapidly inhibits the kinetics GPCR-stimulated AC activity. Experiments were carried out as in (A), except that rapamycin was added at different times relative to the addition of isoproterenol, as indicated by the color coding and the diagram on the left. Grey traces correspond to the isoproterenol stimulated control with no addition of rapamycin. Mean ± S.E.M. (n = 3 independent experiments). (C) Abscisic acid (ABA)-induced recruitment of GαsBP2 to membranes blocks GPCR-stimulated AC activity. Diagram on the left the recruitment of a GαsBP2 probe to the plasma membrane upon ABA stimulation to block Gαs-AC signaling. Graphs with kinetic traces in the middle correspond to luminescence-based cAMP measurements in HEK293T cells expressing PYLcs-GαsBP2 and membrane-anchored ABIcs, or mem-GαsBP2 upon stimulation with isoproterenol in the presence or absence of ABA pre-treatment, as indicated. The bar graph corresponds to the quantification of the area under the curve (AUC) from the kinetic response curves. Mean ± S.E.M. (n = 3 independent experiments). ns, for p > 0.05, **p < 0.01, by paired, two-tailed Student’s t-test. Immunoblots on the right correspond to representative results of experiments confirming the expression of GαsBP2 constructs, membrane-anchored ABIcs, and G proteins.

Source data

Extended Data Fig. 4 endo-GαsBP2 has a modest effect of cAMP responses, but efficiently blocks the ERK phosphorylation.

(A) endo-GαsBP2 minimally reduces GPCR-stimulated AC activity in cells, whereas mem-GαsBP2 efficiently blocks it. Diagram on the top left corresponds to the mechanism of cAMP regulation investigated with GαsBP2 probes. Graphs with kinetic traces on the top right correspond to luminescence-based cAMP measurements in HEK293T cells expressing 100 ng mem-GαsBP2 or 250 ng endo-GαsBP2 stimulated with isoproterenol as indicated. Mean ± S.E.M. (n = 4 independent experiments). The bar graph on the bottom left corresponds to the quantification of the area under the curve (AUC) from the kinetic response curves. Mean ± S.E.M. (n = 4 independent experiments); ns, p > 0.05, **p < 0.01 by one-way ANOVA corrected for multiple comparisons (Dunnett). Immunoblots on the bottom right correspond to representative results of experiments confirming the expression of GαsBP2 constructs. The kinetic curve of the cAMP response from cells expressing mem-GαsBP2 is reproduced from Fig. 2e. (B) Endo-GαsBP2 efficiently blocks the GPCR-stimulated ERK phosphorylation. Diagram on the left corresponds the mechanism of ERK1/2 regulation investigated with GαsBP2 probes. ERK1/2 phosphorylation was detected in HEK293T cells expressing endo-GαsBP2 or mem-GαsBP2 were stimulated (or not) with 10 µM isoproterenol for 5 min, as indicated. A representative immunoblotting result is shown in the middle and the quantification of ERK1/2 phosphorylation is shown on the bar graph on the right. Mean ± S.E.M. (n = 5 independent experiments). *p < 0.05 by one-way ANOVA corrected for multiple comparisons (Dunnett).

Source data

Extended Data Fig. 5 Inhibition of isoproterenol-induced transcriptional responses by different GαsBP2 constructs.

(A) Design of different plasma membrane-anchored GαsBP2 constructs. HEK293T cells transfected with GαsBP2-mem constructs were stained as indicated and visualized by confocal fluorescence microscopy. Scale bars = 10 µm. (B) GαsBP2-mem blocks the isoproterenol-stimulated cAMP response as efficiently as mem-GαsBP2. Diagram on the top left corresponds the mechanism of cAMP regulation investigated with GαsBP2 probes. Graphs with kinetic traces on the bottom correspond to luminescence-based cAMP measurements in HEK293T cells expressing the indicated constructs. Mean ± S.E.M. (n = 3 independent experiments). Immunoblots on the top right correspond to representative results of experiments confirming the expression of GαsBP2 constructs. (C) GαsBP2-mem blocks the isoproterenol-induced gene transcription as efficiently as mem-GαsBP2. Bar graphs on the bottom correspond to relative mRNA levels of PCK1 or FOS in HEK293T cells transfected with GαsBP2-mem or mem-GαsBP2 in the presence or absence of isoproterenol stimulation, as indicated. Mean ± S.E.M. (n = 4 independent experiments); ns, p > 0.05, *p < 0.05, by one-way ANOVA corrected for multiple comparisons (Dunnett). (D) Diagram on the top shows two potential scenarios of Gαs-mediated regulation of gene expression triggered by β2AR. Bar graphs on the bottom correspond to relative mRNA levels of PCK1, FOS, or DUSP1 in HEK293T cells transfected with mem-GαsBP2, endo-GαsBP2, or both constructs simultaneously in the presence or absence of isoproterenol stimulation, as indicated. Mean ± S.E.M. (n = 4 independent experiments); ns, p > 0.05, *p < 0.05, **p < 0.01 by one-way ANOVA corrected for multiple comparisons (Dunnett).

Source data

Extended Data Fig. 6 GαsBP2 does not have GAP-like activity on constitutively active Gαs, but promotes active sequestration into an inactive complex with Gβγ at the plasma membrane.

(A) GαsBP2 does not accelerate GTP hydrolysis by Gαs R201C. Single-turnover GTPase activity was measured with [γ-33P]GTP-loaded Gαs R201C in the absence (Gαs only, 1% DMSO, grey) or presence GαsBP2 (orange) by quantifying the release of 33P[Pi] at 21 °C. Mean ± S.E.M. (n = 3 independent experiments). (B) Gβγ remains dissociated from Gαs R201C after GPCR signal termination both in the presence and absence of mem-GαsBP2. Diagram on the top left corresponds to the BRET-based assay to measure free Gβγ and the mechanism investigated with GαsBP2 probes. Graphs on the left correspond to real-time changes in BRET relative to unstimulated cells expressing Gαs WT alone (“ΔBRET (Gαs WT)”) in HEK293T cells co-expressing a BRET-based biosensor for free Gβγ and Gαs R201C (top graph) or Gαs WT (bottom graph), with or without mem-GαsBP2 expression. After isoproterenol stimulation, cells were treated with alprenolol or buffer as indicated. Mean ± S.E.M. (n = 4 independent experiments). Immunoblots on the bottom left right correspond to representative results of experiments confirming the expression of mem-GαsBP2, G proteins, and BRET sensor components. (C) mem-GαsBP2 promotes the association of Gαs Q227L with Gβγ. Diagram on the left corresponds to the BRET-based assay to measure free Gβγ and the mechanism investigated with GαsBP2 probes. Graphs in the middle correspond to BRET measurements in HEK293T cells co-expressing a BRET-based biosensor for free Gβγ, Gαs Q227L, and different amounts of mem-GαsBP2 WT (orange) or mem-GαsBP2 W11A (blue) as indicated. Open circles correspond to controls in which Gαs Q227L was replaced by Gαs WT in the presence of mem-GαsBP2 WT. Changes in BRET (ΔBRET) relative to cells expressing Gαs WT in the absence of mem-GαsBP2 (“ΔBRET (Gαs WT)”) are shown in the graphs. Mean ± S.E.M. (n = 4 independent experiments). Immunoblots on the left right correspond to representative results of experiments confirming the expression of mem-GαsBP2, G proteins, and BRET sensor components. (D) mem-GαsBP2, but not cyto-GαsBP2, recruits Gαs Q227L to the plasma membrane. Diagram on the left corresponds to the BRET-based assay to measure the association of Gαs with membranes. Graphs in the middle correspond to BRET measurements in HEK293T cells co-expressing a plasma membrane-anchored nanoluciferase (mas-Nluc) and Venus-fused Gαs WT or Q227L in the absence or presence of mem-GαsBP2 or cyto-GαsBP2. Changes in BRET relative to cells expressing Gαs WT alone (“ΔBRET·103 (Gαs WT)”) are shown in the graph. Mean ± S.E.M. (n = 3 independent experiments). Immunoblots on the left right correspond to representative results of experiments confirming the expression of GαsBP2 constructs, G proteins variants, and mas-Nluc. (E) As opposed to mem-GαsBP2, cyto-GαsBP2 does not promote the association of Gαs Q227L with Gβγ. Graphs on the left correspond to BRET measurements in HEK293T cells co-expressing a BRET-based biosensor for free Gβγ, Gαs WT or Q227L, and the indicated GαsBP2 constructs. Changes in BRET (ΔBRET) relative to cells expressing Gαs WT in the absence of mem-GαsBP2 (“ΔBRET (Gαs WT)”) are shown in the graph. Mean ± S.E.M. (n = 4 independent experiments). Immunoblots on the left right correspond to representative results of experiments confirming the expression of GαsBP2 constructs, G proteins, and BRET sensor components. (F) Proposed model for the mechanism by which mem-GαsBP2 sequesters Gαs Q227L into an inactive complex with Gβγ. Upon recruitment of Gαs Q227L from the cytosol to the plasma membrane by mem-GαsBP2 (red), but not cyto-GαsBP2 (green), concentration of the G protein favors its association with membrane-resident Gβγ.

Source data

Extended Data Fig. 7 Gβγ favors the association of Gαs with membranes and mem-GαsBP2 prevents the cytosolic translocation of active Gαs upon GPCR stimulation.

(A) Gβγ facilitates the association of Gαs with the plasma membrane. Diagram on the left corresponds to the BRET-based assay to measure the association of Gαs with membranes. Graphs in the middle correspond BRET measurements in HEK293T cells co-expressing plasma membrane anchored Venus (Venus-KRas), nanoluciferase-fused Gαs (Gαs-Nluc), and different amounts of Gβγ, as indicated, in the presence or absence of 100 nM isoproterenol stimulation as indicated. Results are presented as the ratio between luminescence at 535 nm and 450 nm (“BRET ratio (535/450 nm)”). Mean ± S.E.M. (n = 4 independent experiments). Immunoblots on the left right correspond to representative results of experiments confirming the expression of Venus-KRas, Gαs-Nluc, and Gβγ. (B) mem-GαsBP2 prevents the translocation of Gαs from membranes to the cytosol upon the GPCR stimulation. Diagram on the left corresponds to the BRET-based assay to measure the association of Gαs with membranes. Graphs in the middle correspond BRET measurements in HEK293T cells co-expressing plasma membrane anchored Venus (Venus-KRas), nanoluciferase fused Gαs (Gαs-Nluc), and mem-GαsBP2 WT or mem-GαsBP2 W11A, as indicated. Changes in BRET compared to the unstimulated baseline (“ΔBRET·103 (baseline)”) are shown in the kinetic curves on the right graph, whereas the bar graph on the right corresponds to the quantification of ΔBRET before or after isoproterenol stimulation for 10 min. Mean ± S.E.M. (n = 4 independent experiments). Immunoblots on the left right correspond to representative results of experiments confirming the expression of Venus-KRas, Gαs-Nluc, and mem-GαsBP2.

Source data

Extended Data Fig. 8 Structure-guided, rational design of a cell penetrating GαsBP2 derivative to block Gαs signaling.

(A) GαsBP2 fused to the cell penetrating TAT sequence (TAT-GαsBP2) partially blocks GPCR-stimulated AC activity in cells. Diagram on the left displays the sequence of TAT-GαsBP2 and the mechanism of GPCR-Gs-AC signaling investigated with it. Graphs with kinetic traces in the middle correspond to luminescence-based cAMP measurements in HEK293T cells pre-treated with DMSO (1%, “no GαsBP2”, gray), or TAT-GαsBP2 WT (100 µM, orange) or TAT-GαsBP2 W11A mutant (100 µM, blue) before stimulation with isoproterenol. Mean ± S.E.M. (n = 4-6 independent experiments). Graph on the right correspond to luminescence-based cAMP measurements in HEK293T cells pre-treated the indicated concentrations of TAT-GαsBP2 WT (orange) or TAT-GαsBP2 W11A mutant (blue) before stimulation with isoproterenol (100 nM). Mean ± S.E.M. (n = 3 independent experiments). (B) Systematic identification of structural determinants of GαsBP2 required for Gαs binding. Diagram on the top corresponds to the cell-based BRET assay to measure binding between GαsBP2 and Gαs. Bar graph on the bottom corresponds to BRET measurements in HEK293T cells co-expressing Nluc-fused mem-GαsBP2 (WT or the indicated mutants) with either Venus-fused Gαs WT or Q227L. Relative Gαs binding was calculated using as reference the BRET values for Nluc-fused mem-GαsBP2 co-expressed with Gαs WT (as the minimum, 0%) or with Gαs Q226L (as the maximum, 100%). Mean ± S.E.M. (n = 3 independent experiments). (C) Mapping of the structural determinants of GαsBP2 within the binding interface with Gαs. The structural model of GαsBP2 (orange) bound to Gαs (purple) was generated using ColabFold. Yellow stars indicate amino acid positions of GαsBP2 that result in complete loss of binding in panel B upon mutation, which dock onto the α3/SwII groove of active Gαs. A potential electrostatic hindrance between GαsBP2 S9 and Gαs I235 (red dashed circle), and the positions connected through a hydrocarbon “staple” (gray) in panel D are shown in the bottom left. (D) Optimization of GαsBP2 peptides to efficiently block Gαs-stimulated AC activity in cells. Sequences on the left display amino acids and modification features of TAT-GαsBP2 peptide derivatives; S9A mutation (purple) and hydrocarbon “staple” modification (green) linking positions E10 to S17 (E10^S17). Graph with kinetic traces in the middle correspond to luminescence-based cAMP measurements in HEK293T cells pre-treated with DMSO (1%, “no GαsBP2”, gray), TAT-GαsBP2 S9A (100 µM, purple) or TAT-GαsBP2 S9A E10^S17 (100 µM, green) before stimulation with isoproterenol. Mean ± S.E.M. (n = 3-4 independent experiments). Graphs with concentration-dependence curves on the right correspond to luminescence-based cAMP measurements in untransfected HEK293T cells pre-treated the indicated concentrations of TAT-GαsBP2 WT (orange), GαsBP2 S9A (purple), or TAT-GαsBP2 S9A E10^S17 (green) before stimulation with isoproterenol (100 nM), or in cells transfected with Gαs R201C. Mean ± S.E.M. (n = 3, independent experiments). The half-maximal inhibitory concentration (IC50) was determined from curve fits.

Source data

Extended Data Fig. 9 α-sintide blocks GPCR-mediated activation of Gαs, but not of Gαi3, Gαq, or Gα13.

(A) Diagram depicting the G protein dependent effects investigated with α -sintide (B) α-sintide specifically inhibits Gαs activation. Graphs with kinetic traces on the top correspond to BRET measurements in HEK293T cells co-expressing the indicated combination of GPCR and ONE-GO biosensor after preincubation with 100 µM α-sintide WT (orange), 100 µM α-sintide W11A (green), or 1% (v:v) DMSO (grey) for 2 hrs. Data is presented as real-time changes in BRET relative to the unstimulated baseline (“ΔBRET·103 (baseline)”). Bar graphs on the bottom display the maximal changes in BRET after agonist stimulation relative to the unstimulated baseline (“Max ΔBRET·103”). Mean ± S.E.M. (n = 3-4 independent experiments). (C) α-sintide has no effect on the basal activity of any of the G proteins investigated. BRET was measured in HEK293T cells as in (A) but without stimulation and results are represented as the ratio between luminescence at 535 nm and 450 nm (“BRET ratio (535/450 nm)”). Mean ± S.E.M. (n = 3-4 independent experiments).

Source data

Extended Data Fig. 10 α-sintide improves cytotoxic cytokine production by chronically activated CD8+ T cells.

Diagram on the left represent the experimental design to assess the effect of α-sintide on T cells. Chronically activated human CD8+ T cells were treated with 30 µM of α-sintide WT (orange) or α-sintide W11 A (blue) for 1 day before analysis. Graphs in the middle correspond to the percentage of CD8+ T cells positive for IL-2 and IFNγ (IL-2+/ IFNγ+, top graph), or for IL-2 and TNFα (IL-2+/ TNFα+, bottom graph) quantified by flow cytometry. Bar graphs are mean ± S.E.M. (n = 3 independent experiments), ns, p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA corrected for multiple comparisons (Dunnett). Pseudocolor plots on the right display the average distribution of CD8+ T cells across all replicates. The flow cytometry plots corresponding to the DMSO conditions are reproduced from Fig. 6d because these were the same controls for experiments presented in the two figures.

Source data

Supplementary information

Source data

Source Data Fig. 1

Unprocessed western blots and gels.

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Unprocessed western blots and gels.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Unprocessed western blots and gels.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Unprocessed western blots and gels.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Unprocessed western blots and gels.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Unprocessed western blots and gels.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Unprocessed western blots and gels.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Unprocessed western blots and gels.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Unprocessed western blots and gels.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Unprocessed western blots and gels.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Unprocessed western blots and gels.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Unprocessed western blots and gels.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Luebbers, A., Savransky, S. et al. Inhibitory probes for spatiotemporal analysis of Gαs protein signaling. Nat Chem Biol (2026). https://doi.org/10.1038/s41589-025-02138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41589-025-02138-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing