Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mitotic STAG3–cohesin complex shapes male germline nucleome

Abstract

Germ cells are unique in that they tailor chromatin toward generating totipotency. Accordingly, mammalian spermatogonia, including spermatogonial stem cells that constitute the source for male gametes, acquire distinctive chromatin organization with weak insulation, but the underlying mechanism remains unknown. Here we show that STAG3, so far known to exclusively form meiotic cohesins, generates a mitotic cohesin for male germline nucleome programming in mice. Owing to its shorter chromatin residence, STAG3–cohesin attenuates topologically associating domains, rewires enhancer–promoter and Polycomb-mediated repressive interactions, and facilitates finer and more strengthened compartments, establishing a distinctive spermatogonial nucleome. Moreover, in the absence of STAG3–cohesin, spermatogonial stem cells show an impaired differentiation priming for spermatogenesis. Mitotic STAG3–cohesin is also expressed in human B cells and their malignant variations, promoting their propagation. Our findings on mitotic STAG3–cohesin elucidate a principle of male germline nucleome programming, demonstrate an unexpected mitotic role for STAG3 and might potentially improve understanding of human malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of STAG3–cohesin in GSCs and spermatogonia.
Fig. 2: The functions of STAG3–cohesin during male germ-cell development.
Fig. 3: STAG3–cohesin attenuates insulation for relevant gene expression.
Fig. 4: STAG3 is sufficient for mitosis and meiosis.
Fig. 5: STAG3–cohesin exhibits shorter chromatin residence with potentially slower loop extrusion.
Fig. 6: Mitotic STAG3–cohesin in a heterologous context.
Fig. 7: STAG3–cohesin in human cells and their malignancies.

Similar content being viewed by others

Data availability

Sequencing data generated in this study have been deposited in the Gene Expression Omnibus (GEO) under accession number GSE243962. The raw MS data and analysis files have been deposited in the ProteomeXchange Consortium at http://proteomecentral.proteomexchange.org via the jPOST partner repository at https://jpostdb.org, and can be accessed using the dataset identifier PXD045854 (ref. 144). Source data are provided with this paper.

Code availability

Computational codes and scripts used in this study are available via GitHub at https://github.com/masahiro-nagano/Nagano_2025_NSMB and via Zenodo at https://doi.org/10.5281/zenodo.15813858 (ref. 145).

References

  1. Szabo, Q., Bantignies, F. & Cavalli, G. Principles of genome folding into topologically associating domains. Sci. Adv. 5, eaaw1668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Dekker, J. & Mirny, L. A. The chromosome folding problem and how cells solve it. Cell 187, 6424–6450 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Davidson, I. F. et al. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 616, 822–827 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Banigan, E. J. et al. Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc. Natl Acad. Sci. USA 120, e2210480120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, J. & Krantz, I. D. Cohesin and human disease. Annu. Rev. Genomics Hum. Genet. 9, 303–320 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alonso-Gil, D. & Losada, A. NIPBL and cohesin: new take on a classic tale. Trends Cell Biol. 33, 860–871 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. De Koninck, M. & Losada, A. Cohesin mutations in cancer. Cold Spring Harb. Perspect. Med. 6, a026476 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kojic, A. et al. Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization. Nat. Struct. Mol. Biol. 25, 496–504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cuadrado, A. et al. Specific contributions of cohesin-SA1 and cohesin-SA2 to TADs and Polycomb domains in embryonic stem cells. Cell Rep. 27, 3500–3510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wutz, G. et al. ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL. eLife 9, e52091 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cuadrado, A. & Losada, A. Specialized functions of cohesins STAG1 and STAG2 in 3D genome architecture. Curr. Opin. Genet Dev. 61, 9–16 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, H. J., Hore, T. A. & Reik, W. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14, 710–719 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang, W. W., Kobayashi, T., Irie, N., Dietmann, S. & Surani, M. A. Specification and epigenetic programming of the human germ line. Nat. Rev. Genet. 17, 585–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Nagano, M. et al. Nucleome programming is required for the foundation of totipotency in mammalian germline development. EMBO J. 41, e110600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Du, Z. et al. Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos. Mol. Cell 77, 825–839 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Hilscher, B. et al. Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tissue Res. 154, 443–470 (1974).

    CAS  PubMed  Google Scholar 

  22. McCarrey, J. R. Toward a more precise and informative nomenclature describing fetal and neonatal male germ cells in rodents. Biol. Reprod. 89, 47 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kubo, N. et al. DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis. BMC Genomics 16, 624 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shirane, K., Miura, F., Ito, T. & Lorincz, M. C. NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nat. Genet. 52, 1088–1098 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Yamanaka, S. et al. Broad heterochromatic domains open in gonocyte development prior to de novo DNA methylation. Dev. Cell 51, 21–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y. et al. Reprogramming of meiotic chromatin architecture during spermatogenesis. Mol. Cell 73, 547–561 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S. & Saitou, M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519–532 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Ohta, H. et al. In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate. EMBO J. 36, 1888–1907 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohta, H. et al. Cyclosporin A and FGF signaling support the proliferation/survival of mouse primordial germ cell-like cells in vitro. Biol. Reprod. 104, 344–360 (2021).

    Article  PubMed  Google Scholar 

  32. Kanatsu-Shinohara, M. et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69, 612–616 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Ishikura, Y. et al. In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells. Cell Stem Cell 28, 2167–2179 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Prieto, I. et al. Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat. Cell Biol. 3, 761–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Fukuda, T. et al. STAG3-mediated stabilization of REC8 cohesin complexes promotes chromosome synapsis during meiosis. EMBO J. 33, 1243–1255 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Winters, T., McNicoll, F. & Jessberger, R. Meiotic cohesin STAG3 is required for chromosome axis formation and sister chromatid cohesion. EMBO J. 33, 1256–1270 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hopkins, J. et al. Meiosis-specific cohesin component, Stag3 is essential for maintaining centromere chromatid cohesion, and required for DNA repair and synapsis between homologous chromosomes. PLoS Genet. 10, e1004413 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miyauchi, H. et al. Bone morphogenetic protein and retinoic acid synergistically specify female germ-cell fate in mice. EMBO J. 36, 3100–3119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, L. et al. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20, 858–873 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Ogata, K., Tsai, C. F. & Ishihama, Y. Nanoscale solid-phase isobaric labeling for multiplexed quantitative phosphoproteomics. J. Proteome Res. 20, 4193–4202 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Ishikura, Y. et al. In vitro derivation and propagation of spermatogonial stem cell activity from mouse pluripotent stem cells. Cell Rep. 17, 2789–2804 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ernst, C., Eling, N., Martinez-Jimenez, C. P., Marioni, J. C. & Odom, D. T. Staged developmental mapping and X chromosome transcriptional dynamics during mouse spermatogenesis. Nat. Commun. 10, 1251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Griswold, M. D. Spermatogenesis: the commitment to meiosis. Physiol. Rev. 96, 1–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Yoshida, S. Mouse spermatogenesis reflects the unity and diversity of tissue stem cell niche systems. Cold Spring Harb. Perspect. Biol. 12, a036186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakagawa, T. et al. A multistate stem cell dynamics maintains homeostasis in mouse spermatogenesis. Cell Rep. 37, 109875 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chan, K. L. et al. Pds5 promotes and protects cohesin acetylation. Proc. Natl Acad. Sci. USA 110, 13020–13025 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arruda, N. L., Bryan, A. F. & Dowen, J. M. PDS5A and PDS5B differentially affect gene expression without altering cohesin localization across the genome. Epigenetics Chromatin 15, 30 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spracklin, G. et al. Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers. Nat. Struct. Mol. Biol. 30, 38–51 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Dequeker, B. J. H. et al. MCM complexes are barriers that restrict cohesin-mediated loop extrusion. Nature 606, 197–203 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morawska, M. & Ulrich, H. D. An expanded tool kit for the auxin-inducible degron system in budding yeast. Yeast 30, 341–351 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Kanemaki, M. T. Ligand-induced degrons for studying nuclear functions. Curr. Opin. Cell Biol. 74, 29–36 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y. & Dekker, J. CTCF-CTCF loops and intra-TAD interactions show differential dependence on cohesin ring integrity. Nat. Cell Biol. 24, 1516–1527 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, H. et al. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature 576, 158–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Benedetti, L., Cereda, M., Monteverde, L., Desai, N. & Ciccarelli, F. D. Synthetic lethal interaction between the tumour suppressor STAG2 and its paralog STAG1. Oncotarget 8, 37619–37632 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. van der Lelij, P. et al. Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts. eLife 6, e26980 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. van der Lelij, P. et al. STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers. Life Sci. Alliance 3, e202000725 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kubo, N. et al. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat. Struct. Mol. Biol. 28, 152–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rhodes, J. D. P. et al. Cohesin disrupts polycomb-dependent chromosome interactions in embryonic stem cells. Cell Rep. 30, 820–835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hsieh, T. S. et al. Enhancer–promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1. Nat. Genet. 54, 1919–1932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 6, e25776 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Digre, A. & Lindskog, C. The human protein atlas-Integrated omics for single cell mapping of the human proteome. Protein Sci. 32, e4562 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tabula Sapiens, C. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  71. Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  PubMed  Google Scholar 

  74. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nakagawa, T., Sharma, M., Nabeshima, Y., Braun, R. E. & Yoshida, S. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328, 62–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hara, K. et al. Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell 14, 658–672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. La, H. M. et al. Identification of dynamic undifferentiated cell states within the male germline. Nat. Commun. 9, 2819 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pezzi, N. et al. STAG3, a novel gene encoding a protein involved in meiotic chromosome pairing and location of STAG3-related genes flanking the Williams-Beuren syndrome deletion. FASEB J. 14, 581–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Li, Y. et al. The structural basis for cohesin-CTCF-anchored loops. Nature 578, 472–476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stack, S. M. Heterochromatin, the synaptonemal complex and crossing over. J. Cell Sci. 71, 159–176 (1984).

    Article  CAS  PubMed  Google Scholar 

  81. Zuo, W. et al. Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment. Nat. Commun. 12, 5827 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sasaki, M. et al. The meiosis-specific cohesin component stromal antigen 3 promotes cell migration and chemotherapeutic resistance in colorectal cancer. Cancer Lett. 497, 112–122 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Zhao, M. et al. The upregulation of stromal antigen 3 expression suppresses the phenotypic hallmarks of hepatocellular carcinoma through the Smad3-CDK4/CDK6-cyclin D1 and CXCR4/RhoA pathways. BMC Gastroenterol. 22, 378 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Matthey-Doret, C. et al. Computer vision for pattern detection in chromosome contact maps. Nat. Commun. 11, 5795 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Imamura, M. et al. Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes. Mol. Reprod. Dev. 77, 802–811 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kanatsu-Shinohara, M., Toyokuni, S. & Shinohara, T. CD9 is a surface marker on mouse and rat male germline stem cells. Biol. Reprod. 70, 70–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Ishikura, Y., Ohta, H., Nagano, M. & Saitou, M. Optimized protocol to derive germline stem-cell-like cells from mouse pluripotent stem cells. STAR Protoc. 3, 101544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ohta, H., Yomogida, K., Yamada, S., Okabe, M. & Nishimune, Y. Real-time observation of transplanted ‘green germ cells’: proliferation and differentiation of stem cells. Dev. Growth Differ. 42, 105–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Yuan, H. et al. The EZH2 inhibitor tazemetostat upregulates the expression of CCL17/TARC in B-cell lymphoma and enhances T-cell recruitment. Cancer Sci. 112, 4604–4616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mehra, S., Messner, H., Minden, M. & Chaganti, R. S. Molecular cytogenetic characterization of non-Hodgkin lymphoma cell lines. Genes Chromosomes Cancer 33, 225–234 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Ohno, H. et al. Molecular analysis of a chromosomal translocation, t(9;14)(p13;q32), in a diffuse large-cell lymphoma cell line expressing the Ki-1 antigen. Proc. Natl Acad. Sci. USA 87, 628–632 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maesako, Y., Uchiyama, T. & Ohno, H. Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt’s lymphoma and de novo diffuse large B-cell lymphoma. Cancer Sci. 94, 774–781 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kamesaki, H. et al. A novel B cell line established from Ki-1-positive diffuse large cell lymphoma. Jpn J. Cancer Res. 79, 1193–1200 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brinster, R. L. & Avarbock, M. R. Germline transmission of donor haplotype following spermatogonial transplantation. Proc. Natl Acad. Sci. USA 91, 11303–11307 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brinster, R. L. & Zimmermann, J. W. Spermatogenesis following male germ-cell transplantation. Proc. Natl Acad. Sci. USA 91, 11298–11302 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kojima, Y. et al. GATA transcription factors, SOX17 and TFAP2C, drive the human germ-cell specification program. Life Sci. Alliance 4, e202000974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mizuta, K. et al. Ex vivo reconstitution of fetal oocyte development in humans and cynomolgus monkeys. EMBO J. 41, e110815 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yoshinaga, M. et al. The N6-methyladenosine methyltransferase METTL16 enables erythropoiesis through safeguarding genome integrity. Nat. Commun. 13, 6435 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nakaki, F. et al. Induction of mouse germ-cell fate by transcription factors in vitro. Nature 501, 222–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Ogata, K. & Ishihama, Y. CoolTip: low-temperature solid-phase extraction microcolumn for capturing hydrophilic peptides and phosphopeptides. Mol. Cell Proteom. 20, 100170 (2021).

    Article  CAS  Google Scholar 

  104. Meier, F. et al. Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell Proteom. 17, 2534–2545 (2018).

    Article  CAS  Google Scholar 

  105. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat. Methods 17, 869–870 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yu, F. et al. Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant. Mol. Cell Proteom. 19, 1575–1585 (2020).

    Article  CAS  Google Scholar 

  108. Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Sidoli, S., Bhanu, N. V., Karch, K. R., Wang, X. & Garcia, B. A. Complete workflow for analysis of histone post-translational modifications using bottom-up mass spectrometry: from histone extraction to data analysis. J. Vis. Exp. 111, e54112 (2016).

    Google Scholar 

  110. Yuan, Z. F. et al. EpiProfile 2.0: a computational platform for processing Epi-proteomics mass spectrometry data. J. Proteome Res. 17, 2533–2541 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Weissmann, F. et al. biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc. Natl Acad. Sci. USA 113, E2564–E2569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nakamura, T. et al. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res. 43, e60 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Imoto, Y. et al. Resolution of the curse of dimensionality in single-cell RNA sequencing data analysis. Life Sci. Alliance 5, e202201591 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Krueger, F., James, F., Ewels, P., Afyounian, E. & Schuster-Boeckler, B. FelixKrueger/TrimGalore: v.0.6.7. Zenodo https://doi.org/10.5281/zenodo.5127899 (2021).

  117. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article  Google Scholar 

  118. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhang, Y. et al. Model-based analysis of ChIP–Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).

    Article  PubMed  Google Scholar 

  126. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Chitiashvili, T. et al. Female human primordial germ cells display X-chromosome dosage compensation despite the absence of X-inactivation. Nat. Cell Biol. 22, 1436–1446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Guo, J. et al. The adult human testis transcriptional cell atlas. Cell Res. 28, 1141–1157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Guo, J. et al. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 28, 764–778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hermann, B. P. et al. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep. 25, 1650–1667 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Cahill, K. M., Huo, Z., Tseng, G. C., Logan, R. W. & Seney, M. L. Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. Sci. Rep. 8, 9588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wingett, S. et al. HiCUP: pipeline for mapping and processing Hi-C data. F1000Res. 4, 1310 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36, 311–316 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Highsmith, M. & Cheng, J. VEHiCLE: a variationally encoded Hi-C loss enhancement algorithm for improving and generating Hi-C data. Sci. Rep. 11, 8880 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Venev, S. et al. open2c/cooltools: v.0.4.1. Zenodo https://doi.org/10.5281/zenodo.5214125 (2021).

  140. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Aapola, U. et al. Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics 65, 293–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Imakaev, M. et al. mirnylab/polychrom: v.0.1.0. Zenodo https://doi.org/10.5281/zenodo.3579472 (2019).

  144. Okuda, S. et al. jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Res. 45, D1107–D1111 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Nagano, M. masahiro-nagano/Nagano_2025_NSMB: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.15813858 (2025).

  146. Sasaki, K. et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17, 178–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Shirane, K. et al. Global landscape and regulatory principles of DNA methylation reprogramming for germ cell specification by mouse pluripotent stem cells. Dev. Cell 39, 87–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Kobayashi, H. et al. High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res. 23, 616–627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang, Y. et al. Dynamic epigenomic landscapes during early lineage specification in mouse embryos. Nat. Genet. 50, 96–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Vara, C. et al. Three-dimensional genomic structure and cohesin occupancy correlate with transcriptional activity during spermatogenesis. Cell Rep. 28, 352–367 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Luo, Z. et al. Reorganized 3D genome structures support transcriptional regulation in mouse spermatogenesis. iScience 23, 101034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Open2C et al. Cooltools: enabling high-resolution Hi-C analysis in Python. PLoS Comput. Biol. 20, e1012067 (2024).

Download references

Acknowledgements

We thank the members of our laboratory for their helpful input on this study. We are grateful to S. Goulas and J. A. Drayton for the critical review of the paper; T. Nakamura, K. Fujiwara, M. Kawasaki, Y. Kojima, I. Okamoto, Y. Nagai, N. Konishi, E. Tsutsumi, M. Kawasaki and the Single-Cell Genome Information Analysis Core (SignAC) in ASHBi for technical assistance and help with all sequencing experiments; R. Maeda for helpful discussion regarding the genetic manipulation; Y. Mori for discussion on the testis dissociation; Y. Guo, K. Nakao, M. Nishikori and A. Takaori-Kondo for help with the lymphoma experiments; M. Imakeav, N. Chowdhury and L. A. Mirny for help with polymer simulation; and G. Wutz and I. F. Davidson for discussions. The mouse strain used for this research project, C57BL/6N-/A/^/tm1Brd//Stag3/^/tm1e.1(KOMP)Wtsi//JMmucd, RRID MMRRC_049884-UCD, was obtained from the Mutant Mouse Resource and Research Center (MMRRC) at University of California at Davis, an NIH-funded strain repository, and was donated to the MMRRC by The KOMP Repository, University of California, Davis; originating from S. Murray at The Jackson Laboratory. This work was supported in part by a Grant-in-Aid for Specially Promoted Research from JSPS (22H04920), a grant from HFSP (RGP0057/2018), a grant from the Open Philanthropy Project (2018-193685, GV673604305) to M.S., a JSPS KAKENHI grant (JP 21K20635) to M.N., a Grant-in-Aid for Transformative Research Areas (A) (23H04952) to S.Y., a JSPS KAKENHI grant (JP23H04777), a JST FOREST grant (JPMJFR2317) to M.Y., and NIH grants (CA196539 and NS111997) to B.A.G. Research in the laboratory of J.-M.P. was supported by Boehringer Ingelheim and the European Research Council Horizon 2020 Research and Innovation Programme (101020558). A.S.H. acknowledges funding from the NIH (DP2GM140938, R33CA257878, R01EB035127 and UM1HG011536) and the Mathers Foundation, and M.G. acknowledges funding from the NIH (K99GM149815). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

M.N. and B.H. are equally contributing first author; K.O. and F.U. are equally contributing second authors. Conceptualization: M.N., B.H. and M.S. Investigation: M.N., B.H., K.O., F.U., Y. Ishikura, S.S., C.C.K., G.L., Y.N., H.S., H.W., D.K. and F.N.L.V. Methodology: M.N., B.H., K.O., F.U., Y. Ishikura, M.Y., K.N., W.T., T.I., Y.N., H.S., H.W., D.K., F.N.L.V., Y.K., K.M., Y.Y., H.O., H.A., T.I. and M.G. Formal analysis: M.N., B.H., K.O. and F.U. Writing: M.N., B.H. and M.S. Supervision: J.M., B.A.G., O.T., S.Y., A.S.H., J.-M.P., Y. Ishihama and M.S.

Corresponding authors

Correspondence to Masahiro Nagano or Mitinori Saitou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Ana Losada and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Dimitris Typas, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The in vitro system recapitulates key features of germ-cell development.

a, Correlation heatmap of transcriptomic profiles of the top 5,000 most variable genes among the indicated cell types [ESCs; EpiLCs; d2PGCLCs; d4c7PGCLCs; GSCs31,41,146; E11.5/12.5 germ cells38; and P7 Kit spermatogonia]. b, Correlation heatmap of 5mC profiles in the genome-wide 2 kb bins among the indicated cell types: E13.5 germ cells (ESCs; EpiLCs; d2PGCLCs; d4c7PGCLCs; GSCs31,41,147; E13.5 germ cells148; and P7 Kit spermatogonia24). c, Unsupervised hierarchical clustering (UHC) based on Euclidean distance among 100 kb compartment score tracks of the indicated cell types [in vitro (ESCs/EpiLCs/d4c7PGCLCs/GSCs)19, in vivo [E3.5 ICM/E6.5 epiblast cells149/E11.5 PGCs20], and spermatogonia in several publications81,150,151. Note that spermatogonia reported by Zuo et al.81 and Vara et al.150 were purified by FACS based on DNA content and include undifferentiated and differentiating spermatogonia, while those by Luo et al.151 were collected with unit gravity sedimentation followed by purity confirmation with immunofluorescence (IF) analysis. Primitive type A spermatogonia (priSG-A) expressed GFRA1 and were enriched for spermatogonial stem cells, while type A spermatogonia expressed KIT and were enriched for differentiating spermatogonia151.

Source data

Extended Data Fig. 2 STAG3–cohesin in GSCs and during male germ-cell development.

a, The numbers of RAD21 peaks co-localizing (red, CTCF) or not co-localizing (blue, non-CTCF) with CTCF peaks in the indicated cell types. b, Proportion of non-CTCF RAD21 sites annotated to open sites bearing different chromatin states in GSCs. Open sites are annotated in Nagano et al.19, with promoter and promoterCTCF designated as active promoter (Act. Prom) and CTCF, respectively. c, ChIP-seq read density for CTCF, STAG1/2, and RAD21 (2 kb window) around the RAD21 peak centers in the indicated cell types. The RAD21 peaks with CTCF and STAG1/2, with STAG1 only, with STAG2 only, and with no STAGs are shown. Note that GSCs show a substantial proportion ( ~ 30%) of no STAG peaks. d, Proportion of RAD21 peaks overlapping with those of STAGs in the indicated cell types. e, Representative ChIP-seq tracks of STAG 1/2 and RAD21 in EpiLCs and GSCs. Blue highlight represent RAD21 peaks lacking CTCF, STAG1, and STAG2 f, RNA [log2 (RPM + 1)] and protein expression (normalized with RAD21) of Stag1/2/3/STAG1/2/3 in the indicated cell types measured by 3′ RNA-seq and Western blot analysis, respectively. g, Stag1/2/3 mRNA expression during male and female germ-cell development in vivo at the indicated embryonic days (E) and postnatal days (P)33,38,99. h, STAG3 mRNA expression during human male germ cell developtment128,129,130 at the indicated embryonic weeks (wk) and postnatal months (M). i, Protein quantification with RAD21 (left)- and STAG3 (right)-IP-MS from GSCs using iBAQ. “N.D.” indicates not detected. Note that this RAD21-IP-MS was an independent experiment from that in Fig. 1d.

Source data

Extended Data Fig. 3 Generation of Stag3 knockout in GSCs and characterization of their phenotype.

a, (top) Scheme of PAM and guide RNA in the Stag3 exon 2. (bottom) Sequences of the targeted loci in two Stag3 KO lines. b, Western blot for STAG3 and α-tubulin in WT and Stag3 KO GSCs. c, STAG3 enrichment at STAG3-peaks defined in WT GSCs in WT and Stag3 KO GSCs (one experiment). d, DEGs between WT and Stag3 KO GSCs by MA plot. e, Two-sided Fisher’s exact test of the overlap of DEGs between E12.5 male germ cells38 and P7 KIT spermatogonia24 with DEGs between WT and Stag3 KO GSCs. p-values and the proportion of overlapped genes are indicated, and colors represent the odds ratio. f, A model of spermatogonia subpopulations44,45,46. Undifferentiated spermatogonia contain spermatogonial stem cells (SSCs) (“stem-cell” spermatogonia: Gfrα1+/Plvap+), which either self-renew or form “intermediate” (Gfrα1+/Plvap) and “differentiation-primed” (Gfrα1/Ngn3+/Rarg+) spermatogonia. The “differentiation-primed” spermatogonia are immediate precursors for “differentiating” spermatogonia (Kit+) for spermatogenesis. Both “intermediate” and “differentiation-primed” spermatogonia retain a capacity to revert to “stem-cell” spermatogonia. The expression of key markers is described at the bottom of the panel. g, Uniform manifold approximation and projection (UMAP) for dimensionality reduction and Louvain clustering of the mouse “spermatogonia” scRNA-seq dataset43. “Spermatogonia” are classified into: “stem-cell” spermatogonia (2), “differentiation-primed” spermatogonia (3), “differentiating” spermatogonia 1 (1), “differentiating” spermatogonia 2 (0), and “early meiotic” spermatocytes (4). h, UMAP embedding as in (g) for marker expression (normalized expression levels). i, Marker gene expression in the five cell populations in (g). j, Mean expression of the Stag1/2/3 in the “stem-cell” spermatogonia (StemCellSg), “differentiation-primed” spermatogonia (Diff. Primed), and “differentiating” spermatogonia 1 (DiffSg1). k, UMAP embedding and Louvain clustering of a human “spermatogonia” scRNA-seq dataset131. Cells were classified into 12 populations. DiffSg: differentiating spermatogonia; StemCellSg: “stem-cell” spermatogonia; Diff.Primed: “differentiation-primed” spermatogonia; NonSg: non-spermatogonia. l, Marker gene expression in the 12 cell populations in (k).

Source data

Extended Data Fig. 4 Characterization of spermatogenesis/spermatogonia in Stag3 KO mice.

a, UMAP and Louvain clustering of scRNA-seq data of WT and Stag3 KO mouse testes at P15. Cells were classified into 12 distinct populations, as indicated. UndiffSg: undifferentiated spermatogonia; DiffSg: differentiating spermatogonia. b, Expression of spermatogonia markers and a Sertoli marker (Sox9) in the UMAP in (a). c, Distribution of WT and Stag3 KO cells in the UMAP in (a). d, UMAP and Louvain clustering of the spermatogonia population (cluster1) in (a). The spermatogonia were classified into “stem-cell” (cluster 1), “intermediate” (cluster 2), “differentiation-primed” (cluster 0), and “differentiating” (cluster 3) spermatogonia. e, Marker gene expression in the four populations described in (d). f, Violin and box plots of the normalized expression of the indicated genes in WT and Stag3 KO spermatogonia at P15. Box plots are as in Fig. 2d. p-values are measured by two-sided Welch’s t-test. Each box plot includes 2,616 WT and 2,418 KO cells. p-values shown in the panels are as follows: Id4 (6.3 × 10−5), Dusp6 (3.2 × 10−3), Neurog3 (1.6 × 10−3), Gfra1 (1.3 × 10−2), Sox3 (6.9 × 10−3), Rarg (2.9 × 10−3). g, UMAP and Louvain clustering of scRNA-seq data of WT and Stag3 KO undifferentiated spermatogonia at 8 weeks. Cells were classified into 11 distinct populations, as indicated. StemCellSg: “stem-cell” spermatogonia; Diff.Primed: “differentiation-primed” spermatogonia; EarlyMs: early meiotic cells; LateGerm: late-stage germ cells, including spermatocytes and spermatids. h, Spermatogonia marker expression in the UMAP in (g). i, Violin and dot plots of the normalized expression of the indicated genes in the clusters for undifferentiated spermatogonia [clusters 0 − 6 in the UMAP in (g)]. j, Correlation of Stag1, Stag2, and Stag3 with genes in undifferentiated spermatogonia [cluster 0 − 6 in (g)] in 8-week testes. The genes on the X-axis are ordered by correlation. k, Immunofluorescence (IF) analysis for GFRA1 (magenta), SOX9 (cyan), and PLZF (yellow) expression in P15 WT and Stag3 KO testes. Bar, 50 μm. For each genotype, a total of four slides were analyzed, prepared from two testes obtained from two different mice (two slides per testis).

Source data

Extended Data Fig. 5 A mechanistic basis of the Stag3 KO phenotypes in GSCs.

a, ChIP-seq read density for RAD21 in WT and Stag3 KO GSCs (2 kb window) around the CTCF-colocalized and CTCF-non-colocalized RAD21 peak centers. b, Differential Hi-C contact map between WT and Stag3 KO GSCs (top) and CTCF-binding profile in WT GSCs (bottom). Red circles, more frequent interactions between CTCF-binding sites (pink) in Stag3 KO GSCs. c, Genome-wide contact probability (P(s)) curves (top) and their slopes (P’(s)) (bottom) for E11.5 mitotic pro-spermatogonia20 and WT and Stag3 KO GSCs. d, Overlap of CTCF-binding sites between WT and Stag3 KO GSCs. e, Comparison of the normalized CTCF-binding intensity in CTCF/cohesin co-occupied regions between WT and Stag3 KO GSCs. f, Differential interaction strength, as measured by chromosight84, for enhancer–promoter (left two panels) and Polycomb-associated loops (right two panels) between WT and Stag3 KO GSCs. p-values are measured by two-sided Welch’s t-test. Control genes, expression-matched genes with the genes of interest as defined in Fig. 3i, j. Box plots are as in Fig. 2d. Gene numbers analyzed are as follows: E–P interaction (left panel) — DEG-Control: Upregulated genes (left): 218-95, 174-91, 135-86, 125-73, 297-224; Downregulated genes (right): 297-134, 354-251, 271-180, 213-141, 397-378. Polycomb interaction (right panel) — Upregulated genes (left): 22-13, 14-8, 16-14, 8-8, 345-158; Downregulated genes (right): 42-15, 16-8, 26-15, 35-33, 934-456. p-values (ordered left to right) for each panel are as follows: E–P interaction (left panel) — Upregulated genes (left): 0.44, 0.0035, 0.15, 0.022, 0.55; Downregulated genes (right): 0.00012, 0.015, 0.00036, 0.94, 0.0068. Polycomb interaction (right panel) — Upregulated genes (left): 0.14, 0.13, 0.14, 0.71, 0.00039; Downregulated genes (right): 0.26, 0.010, 0.059, 0.62, 0.70. g, Violin and box plots of the expression of down-regulated genes in Stag3 KO GSCs defined in E12.5 male germ cells38 and P7 Kit spermatogonia24. The p-value (<2.22e−16) was measured by two-sided Welch’s t-test. Box plots (471 genes each) are as in Fig. 2d. h, Virtual 4 C plot from the transcription start site (TSS: yellow shade) of Ddx4 in E13.5 male germ cells20 and undifferentiated spermatogonia151. Red shading, Ddx4 enhancer19.

Source data

Extended Data Fig. 6 Generation and phenotypes of single-Stag GSCs.

a, (Top) Scheme for PAM and guide RNA sequences in the Stag1 exon4 (left) or in the Stag2 exon8 (right). (Bottom) Sequences of the targeted loci in the Stag1/2 double-knockout (dKO) (Stag3-only) and Stag1/3 dKO (Stag2-only) lines (left) or in the Stag1/2 dKO (Stag3-only) and Stag2/3 dKO (Stag1-only) lines (right). b, The protein abundance of STAG1/2/3 was measured by in-gel digestion followed by mass spectrometry (MS) in the indicated cell lines. The protein abundance was calculated from the peak area intensities of the top 3 unique peptides that only map to the protein and do not map to other identified proteins. The protein abundance was represented using iBAQ. Two technical replicates (dots) were analyzed and the averages are shown as bars. c, Doubling time (hour, averages as bars) of WT (n = 4) and single-Stag GSCs (each n = 2). While all single-Stag GSCs appeared to show slower propagation compared to WT GSCs, we did not perform statistical analysis, since independent each single-Stag GSC clone numbers we analyzed were two. d, Representative IF images of GFP (green), SYCP3 (red) and DAPI (grey) in a testis transplanted with Stag3 KO GSCs. Bar, 50 μm. Two slides obtained from two independent mice, were analyzed. e, Representative IF images of GFP (green), SYCP3 (red) and DAPI (grey) in a testis transplanted with Stag3-only GSCs. Bar, 50 μm. Five slides obtained from two independent mice, were analyzed.

Source data

Extended Data Fig. 7 CTCF and cohesin-associated factors in single-Stag GSCs.

a, Upset plot for overlap of CTCF-binding sites among WT and single-Stag GSCs. b, Comparison of normalized CTCF intensity in CTCF/cohesin co-occupied sites between WT and single-Stag GSCs as indicated. c, Spike-in-normalized RAD21 enrichment at CTCF-binding sites in WT and single-Stag GSCs. d, The numbers of TAD boundaries defined by the TAD boundary strength measured by cooltools152 in the indicated single-Stag GSCs. e, Violin and box plots of the loop strength quantified by Chromosight84. Box plots (45,701 loops each) are as in Fig. 2d. f, Representative image of Western blot analysis for the enrichment/expression of PDS5A/B and RAD21 in WT and single-Stag GSCs in the chromatin fraction. Two technical replicates were analyzed. g, Abundance of acetylated SMC3 (SMC3ac), PDS5A/B and RAD21 in the chromatin fraction as quantified by Western blot analysis as in (f) normalized by histone H3. Two technical replicates were analyzed. Histone H3, used as a loading control, was obtained from three different lanes. All proteins were derived from the same protein lysate.

Source data

Extended Data Fig. 8 Compartment profiles of single-Stag GSCs.

a, P’(s) curves for WT GSCs. Features analyzed by polymer simulation were annotated. b, Simulation results of P’(s) (top), the separation at slowest decay (representing the average loop size; middle), and the slope between peak and dip (representing the strength of insulation; bottom) in various parameters for the CTCF-capture ratio (left), loop extrusion velocity (middle), and cohesin residence time (right). LEF: loop extrusion factor. c, Diagram of the ATPase assay. Each component of the cohesin complex and DNA was purified (top), and ATP hydrolysis rates were compared based on their sequential addition (bottom) using thin-layer chromatography and autoradiography. d, Coomassie-blue staining of the indicated recombinant proteins on SDS-PAGE. Two biological replicates were analyzed. e, ATPase rates in the presence of the indicated components were determined using thin-layer chromatography/autoradiography. The upper and lower ends of the error bars represent mean + and – SD, respectively. p-values are measured by two-sided Welch’s t-test. Replicates per condition: n = 3 for most groups; n = 5 for Trimer+NM + DNA, and n = 4 for Trimer+STAG3 + NM + DNA. All data were obtained from two biological replicates of protein preparations. f, Scheme for the generation of STAG1-only and STAG3-only Hela cells for iFRAP experiments. OSTIR1: Oryza sativa Transport inhibitor response 1; DHB: DNA helicase B; IAA: indole-3-acetic acid (auxin); Dox: doxycycline. Halo, SNAP, AID, and FLAG are tags for proteins. g, Western blot for STAG1, STAG3, and α-tubulin in the whole cell lysate and for STAG2 and histone H3 in the chromatin fraction in STAG1-only and STAG3-only Hela cells in the presence (+) and absence (−) of IAA and Dox as indicated (one experiment). h, Representative Hi-C contact maps depicting chr5:9–42 mb at 50-kb resolution (a compartment scale) in Stag1-only and Stag3-only GSCs. The heatmap color scale represents the normalized contact frequency. i, Enrichment of homotypic (that is, intra-compartmental) interaction strength as measured using the saddle strength function of cooltools152 in Stag1- and Stag3-only GSCs. The enrichment of interactions between the A-A and B-B compartments over the A-B compartment is represented as higher y values.

Source data

Extended Data Fig. 9 Generation of Stag3-only ESCs.

a, FACS selection of ESCs expressing eGFP and mCherry2 10 days after transfection of plasmids expressing Cas9 and sgRNA targeting the Rosa26 locus and the knock-in cassette as shown in Fig. 6a. b, (left) Scheme for the detection of the knock-in allele by four PCR pairs. (right) PCR bands of each primer pair on agarose gel electrophoresis. c, Efficiency of the knockouts by frame-shift mutations using either Stag1- or Stag2-sgRNAs in WT ESCs. Eight clones were assessed for each KO, and the efficiencies for any-base insertion or deletion were calculated. In-frame deletions were regarded as WT. d, (left) Scheme for the generation of Stag1/2 DKO ESCs on Stag1 KO- Stag3 over-expressing ESCs with Stag2 sgRNA. (right) KO efficiency with frame-shift mutations. Thirty-two clones were assessed, and the efficiency with any-base insertion or deletion in the Stag2 allele was calculated. In-frame deletions were regarded as WT. e, Western blot for STAG1, STAG2, eGFP-STAG3, and α-tubulin in WT GSCs and Stag3-only ESCs using the whole cell lysate (one experiment). f, Enrichment of the homotypic (that is, intra-compartmental) interaction strength measured by cooltools152 in WT and Stag3-only ESCs. g, Correlation of differential insulation scores between WT and Stag3-only ESCs with those between CTCF, WAPL, or RAD21 non-degraded and degraded ESCs47,65,66,67. Treated: auxin-treated for AID-tagged RAD21, CTCF, or WAPL. AID: auxin-inducible degron. h, Representative Western blot image for RAD21 and histone H3 expression in WT and Stag3-only ESCs using the chromatin fraction. Two biological replicates in each sample were analyzed. i, Abundance of RAD21 as quantified in (h) normalized by histone H3. j, Western blot for RAD21 and histone H3 expression in Stag1-only and Stag3-only mRAD21-Halo ESCs using the chromatin fraction (one experiment). While Stag1-only ESCs retain the intact Stag3 gene, they showed negligible STAG3 expression.

Source data

Extended Data Fig. 10 STAG3 profiles in human B-cells and lymphoma and a model for the loop extrusion of the STAG1– and STAG3–cohesins.

a, Average STAG3 expression in various cell types based on the Tabula Sapiens initiative70. Box plots (others: 172 cells) are as in Fig. 2d. b, STAG3 expression in primary tumor samples as analyzed by The Cancer Genome Atlas (TCGA)71. DLBC: diffuse large B-cell lymphoma; THYM: thymoma; LGG: lower grade glioma; GBM: glioblastoma multiforme; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma. Box plots are as in Fig. 2d. Each box plot includes samples from DLBC (n = 48), THYM (n = 120), LGG (n = 514), GBM (n = 157), CESC (n = 304), and Others (n = 8,818). c, Rank–rank hypergeometric overlap (RRHO) analysis133 evaluating the correlation of the expression levels of DEGs between wild-type and Stag3 KO GSCs and the correlation of gene expression with STAG3 among DepMap lymphoma cell lines. The color coding is as indicated. The x-axis ranks genes by their correlation with STAG3 expression in lymphoid cancers, while the y-axis ranks genes by the log2 fold-change of expression between wild-type and Stag3 KO GSCs. The lower-left quadrant represents genes that have low correlation with STAG3 in lymphoid cancers and are down-regulated in wild-type GSCs. The upper-left quadrant represents genes that have low correlation with STAG3 in lymphoid cancers and are up-regulated in wild-type GSCs. The lower-right quadrant shows genes that have high correlation with STAG3 in lymphoid cancers and are down-regulated in wild-type GSCs. The upper-right quadrant represents genes that have high correlations with STAG3 in lymphoid cancer and are up-regulated in wild-type GSCs. Log10-transformed hypergeometric p-values are visualized in a heatmap, with an accompanying color scale indicating the p-value for significance. d, Scheme for the generation of mCherry-expressing STAG3 KO and GFP-expressing control OCI-Ly7 cells and design of the growth comparison experiment. CMV: Human cytomegalovirus immediate early enhancer and promoter; BSD: blasticidin; puro: puromycin. e, Representative FACS plot in a growth comparison experiment with gating strategy for the assessment of the mCherry-expressing or GFP-expressing cell ratio. f, RAD21 enrichment in CTCF-non-colocalized peaks in Stag1-only GSCs and Stag3-only GSCs. g, The fraction of reads in called peak regions (FRiP score) in WT, Stag1-only, and Stag3-only GSCs. Peaks were defined as the union of RAD21 peaks detected in at least one cell type. The FRiP score is defined as the fraction of reads that fall into a peak. The diamonds represent the mean of the two replicates. h, A model for the dynamics of loop extrusion in the indicated cell types. This model proposes that STAG1–cohesin preferentially forms longer CTCF loops and STAG3–cohesin creates shorter loops, and both cohesin variants potentially pause at non-CTCF barriers such as transcription factor complexes and Polycomb-repressive complexes.

Source data

Supplementary information

Reporting Summary

Peer Review File

Supplementary Tables 1–8

Supplementary Table 1. Intensity matrix of IP–MS and gel-based MS in this study. Supplementary Table 2. DEGs between WT and Stag3 KO GSCs, and their pathway enrichments. Supplementary Table 3. List of enhancer–promoter and Polycomb-mediated loops. Supplementary Table 4. Fitting parameters of the iFRAP assays performed in this study. Supplementary Table 5. Deletion profiles in Stag KO ES cells. Supplementary Table 6. Deletion profiles in STAG3 KO OCI-Ly7 cells generated in this study. Supplementary Table 7. gRNA sequences used in this study. Supplementary Table 8. DNA oligonucleotides used in this study.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 1

FACS gating strategy and uncropped blots.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 2

FACS gating strategy.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Uncropped blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Uncropped blots.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 7

FACS gating strategy and uncropped blots.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 3

Uncropped blots.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 7

Uncropped blots.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 8

Uncropped blots.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 9

Uncropped blots.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagano, M., Hu, B., Ogata, K. et al. The mitotic STAG3–cohesin complex shapes male germline nucleome. Nat Struct Mol Biol 32, 2203–2218 (2025). https://doi.org/10.1038/s41594-025-01647-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-025-01647-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing