Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Selecting aminoacyl-tRNA synthetase/tRNA pairs for efficient genetic encoding of noncanonical amino acids into proteins

Abstract

A critical component of genetic code expansion applications is an aminoacyl-tRNA synthetase (RS)/tRNA pair that faithfully encodes a noncanonical amino acid (ncAA) in response to a specific codon. Here we detail a procedure to select an ncAA-specific RS from a publicly available 3.2-million-member Methanomethylophilus alvus pyrrolysyl-RS (MaPylRS) active site mutant library. Four main parts of the procedure are: (1) preparing the library for use and creating needed cell lines; (2) life and death selections that, respectively, select for functional RSs and select against RSs that incorporate canonical amino acids; (3) three fluorescence-based status checks that provide information about the efficiency and fidelity of the surviving RSs in incorporating the target ncAA; and (4) characterizing top hits to find the best ones for use in applications. The resulting RS/tRNA pairs can be used in either bacterial or eukaryotic cells to study proteins of interest. Additionally, the stability of the MaPylRSs makes them useful in cell-free ncAA-protein expression and amenable to structural and other in vitro characterizations. This Protocol is usable by those with basic molecular biology expertise and features a reliable positive control scheme for selections, status checks at different stages to interpret the level of success and a robust procedure to characterize newly engineered tRNA–RS pairs. Users of this Protocol can expect to select ncAA-specific RS/tRNA pairs from the library within about 30–50 d depending on preparation needs.

Key points

  • This Protocol outlines the steps to isolate aminoacyl-tRNA synthetase/tRNA pairs that incorporate noncanonical amino acids into proteins. RSs are selected from a publicly available 3.2-million-member MaPylRS active site mutant library and involves a series of life and death selections and fluorescence-based enrichment and evaluation.

  • Aminoacyl-tRNA synthetase hits with high fidelity and efficiency in incorporating the desired noncanonical amino acids are suitable for use in prokaryotic and eukaryotic cells and in cell-free protein expression systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the three main stages for generating new high efficiency RS/tRNA pairs.
Fig. 2: Diversity of ncAA structures.
Fig. 3: Schematic flow chart for the four stages of this protocol.
Fig. 4: Assessment of library coverage.
Fig. 5: Sony SH800S sort plots of events (individual cells).
Fig. 6: Workflow for RS library propagation.
Fig. 7: Workflow for competent cell preparation.
Fig. 8: A dry ice ethanol bath using a plastic tub for flash-freezing library-ready electrocompetent cells.
Fig. 9: Example results for ncAA toxicity tests.
Fig. 10: Assessment of library coverage achieved during a transformation.
Fig. 11: Example agar plates and a DNA separation gel from the positive selection.
Fig. 12: Example agar plates and a DNA separation gel from the negative selection.
Fig. 13: Example of a FACS histogram for cells encoding nitroTyr into sfGFPNY using the functional ‘NY-F5’ MaPylRS/tRNA pair.
Fig. 14: Example results of level 1 status checks with strong, weak and no evidence for selection success after one round of positive and negative selections.
Fig. 15: In-cell fluorescence evaluation of individual hits expressing sfGFP150 with and without ncAA after a positive and negative selection.
Fig. 16: Level 3 status check results for the MaPylRS variant F4.
Fig. 17: UP50 assessment of three MaPylRS hits obtained from the nitroTyr selection.
Fig. 18: Example data of a permissivity screen to identify nitroTyr RS variants that can encode structurally analogous ncAAs.
Fig. 19: Positive selection plates during a second round of positive selection for nitroTyr under stringent conditions using increased CAM.
Fig. 20: Status check 2 of MaPylRSs isolated after two rounds of positive selection.

Similar content being viewed by others

Data availability

The data used to illustrate procedural outcomes of this protocol are available as Source data within the article or reported by supporting primary research papers23. Additional relevant data may be available upon request to the authors. Source data are provided with this paper.

References

  1. Shandell, M. A., Tan, Z. & Cornish, V. W. Genetic code expansion: a brief history and perspective. Biochemistry 60, 3455–3469 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. de la Torre, D. & Chin, J. W. Reprogramming the genetic code. Nat. Rev. Genet. 22, 169–184 (2021).

    Article  PubMed  Google Scholar 

  3. Jann, C., Giofré, S., Bhattacharjee, R. & Lemke, E. A. Cracking the code: reprogramming the genetic script in prokaryotes and eukaryotes to harness the power of noncanonical amino acids. Chem. Rev. 124, 10281–10362 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koch, N. G. & Budisa, N. Evolution of pyrrolysyl-tRNA synthetase: from methanogenesis to genetic code expansion. Chem. Rev. 124, 9580–9608 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perdiguero, A. N. & Liang, A. D. Practical approaches to genetic code expansion with aminoacyl-tRNA synthetase/tRNA pairs. CHIMIA 78, 22–31 (2024).

    Article  CAS  Google Scholar 

  6. Xie, J. & Schultz, P. G. An expanding genetic code. Methods 36, 227–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Xie, J. & Schultz, P. G. A chemical toolkit for proteins—an expanded genetic code. Nat. Rev. Mol. Cell Biol. 7, 775–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Krahn, N., Tharp, J. M., Crnković, A. & Söll, D. Engineering aminoacyl-tRNA synthetases for use in synthetic biology. Enzymes 48, 351–395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beattie, A. T., Dunkelmann, D. L. & Chin, J. W. Quintuply orthogonal pyrrolysyl-tRNA synthetase/tRNAPyl pairs. Nat. Chem. 15, 948–959 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neumann, H., Slusarczyk, A. L. & Chin, J. W. De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. J. Am. Chem. Soc. 132, 2142–2144 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Cervettini, D. et al. Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase–tRNA pairs. Nat. Biotechnol. 38, 989–999 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spinck, M., Guppy, A. & Chin, J. W. Automated orthogonal tRNA generation. Nat. Chem. Biol. 21, 657–667 (2025).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, L., Zhang, Z., Brock, A. & Schultz, P. G. Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl Acad. Sci. USA 100, 56–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Chin, J. W., Martin, A. B., King, D. S., Wang, L. & Schultz, P. G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl Acad. Sci. USA 99, 11020–11024 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chin, J. W. et al. Addition of p-Azido-l-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124, 9026–9027 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Dumas, A., Lercher, L., Spicer, C. D. & Davis, B. G. Designing logical codon reassignment—expanding the chemistry in biology. Chem. Sci. 6, 50–69 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lino, B. R., Williams, S. J., Castor, M. E. & Van Deventer, J. A. Reaching new heights in genetic code manipulation with high throughput screening. Chem. Rev. 124, 12145–12175 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Ann. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen, D. P. et al. Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J. Am. Chem. Soc. 136, 2240–2243 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cropp, T. A., Anderson, J. C. & Chin, J. W. Reprogramming the amino-acid substrate specificity of orthogonal aminoacyl-tRNA synthetases to expand the genetic code of eukaryotic cells. Nat. Protoc. 2, 2590–2600 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Grasso, K. T. et al. A facile platform to engineer Escherichia coli tyrosyl-tRNA synthetase adds new chemistries to the eukaryotic genetic code, including a phosphotyrosine mimic. ACS Cent. Sci. 8, 483–492 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Avila-Crump, S. et al. Generating efficient Methanomethylophilus alvus pyrrolysyl-trna synthetases for structurally diverse non-canonical amino acids. ACS Chem. Biol. 17, 3458–3469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galles, G. D. et al. Tuning phenylalanine fluorination to assess aromatic contributions to protein function and stability in cells. Nat. Commun. 14, 59 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Porter, J. J. et al. Genetically encoded protein tyrosine nitration in mammalian cells. ACS Chem. Biol. 14, 1328–1336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jang, H. S., Jana, S., Blizzard, R. J., Meeuwsen, J. C. & Mehl, R. A. Access to faster eukaryotic cell labeling with encoded tetrazine amino acids. J. Am. Chem. Soc. 7245–7249 (2020).

  27. Seki, E., Yanagisawa, T., Kuratani, M., Sakamoto, K. & Yokoyama, S. Fully productive cell-free genetic code expansion by structure-based engineering of Methanomethylophilus alvus pyrrolysyl-tRNA synthetase. ACS Synth. Biol. 9, 718–732 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Meineke, B., Heimgärtner, J., Lafranchi, L. & Elsässer, S. J. Methanomethylophilus alvus Mx1201 provides basis for mutual orthogonal pyrrolysyl tRNA/aminoacyl-tRNA synthetase pairs in mammalian cells. ACS Chem. Biol. 13, 3087–3096 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beránek, V., Willis, J. C. W. & Chin, J. W. An evolved Methanomethylophilus alvus pyrrolysyl-tRNA synthetase/tRNA pair is highly active and orthogonal in mammalian cells. Biochemistry 58, 387–390 (2019).

    Article  PubMed  Google Scholar 

  30. Willis, J. C. W. & Chin, J. W. Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs. Nat. Chem. 10, 831–837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gan, Q. & Fan, C. Orthogonal translation for site-specific installation of post-translational modifications. Chem. Rev. 124, 2805–2838 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bednar, R. M. et al. Genetic incorporation of two mutually orthogonal bioorthogonal amino acids that enable efficient protein dual-labeling in cells. ACS Chem. Biol. 16, 2612–2622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meineke, B., Heimgärtner, J., Eirich, J., Landreh, M. & Elsässer, S. J. Site-specific incorporation of two ncaas for two-color bioorthogonal labeling and crosslinking of proteins on live mammalian cells. Cell Rep. 31, 107811 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Nikić, I. & Lemke, E. A. Genetic code expansion enabled site-specific dual-color protein labeling: superresolution microscopy and beyond. Curr. Opin. Chem. Biol. 28, 164–173 (2015).

    Article  PubMed  Google Scholar 

  35. Van Fossen, E. M. et al. Nanobody assemblies with fully flexible topology enabled by genetically encoded tetrazine amino acids. Sci. Adv. 8, eabm6909 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roy, G. et al. Development of a high yielding expression platform for the introduction of non-natural amino acids in protein sequences. MAbs 12, 1684749 (2020).

    Article  PubMed  Google Scholar 

  37. Ma, J. S. Y. et al. Versatile strategy for controlling the specificity and activity of engineered T cells. Proc. Natl Acad. Sci. USA 113, E450–E458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, Q. et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics. Cell 182, 85–97.e16 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Switzer, H. J. et al. Employing non-canonical amino acids towards the immobilization of a hyperthermophilic enzyme to increase protein stability. RSC Adv 13, 8496–8501 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bednar, R. M. et al. Immobilization of proteins with controlled load and orientation. ACS Appl. Mater. Interfaces 11, 36391–36398 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koch, N. G., Baumann, T. & Budisa, N. Efficient unnatural protein production by pyrrolysyl-trna synthetase with genetically fused solubility tags. Front. Bioeng. 9, 807438 (2021).

    Google Scholar 

  43. Cao, L., Liu, J., Ghelichkhani, F., Rozovsky, S. & Wang, L. Genetic incorporation of ϵ-N-benzoyllysine by engineering Methanomethylophilus alvus pyrrolysyl-tRNA synthetase. ChemBioChem 22, 2530–2534 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fricke, R. et al. Expanding the substrate scope of pyrrolysyl-transfer RNA synthetase enzymes to include non-α-amino acids in vitro and in vivo. Nat. Chem. 15, 960–971 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gottfried-Lee, I., Perona, J. J., Karplus, P. A., Mehl, R. A. & Cooley, R. B. Structures of Methanomethylophilus alvus pyrrolysine tRNA-synthetases support the need for de novo selections when altering the substrate specificity. ACS Chem. Biol. 17, 3470–3477 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Genetically encoding N-ε-acetyllysine in recombinant proteins. Nat. Chem. Biol. 4, 232–234 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Italia, J. S., Latour, C., Wrobel, C. J. J. & Chatterjee, A. Resurrecting the bacterial tyrosyl-tRNA synthetase/tRNA pair for expanding the genetic code of both E. coli and eukaryotes. Cell Chem. Biol. 25, 1304–1312.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chin, J. W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Wu, N., Deiters, A., Cropp, T. A., King, D. & Schultz, P. G. A genetically encoded photocaged amino acid. J. Am. Chem. Soc. 126, 14306–14307 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Italia, J. S. et al. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat. Chem. Biol. 13, 446–450 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, Y., Cho, S., Kim, J. -C. & Park, H.-S. tRNA engineering strategies for genetic code expansion. Front. Genet. 15, 1373250 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park, H.-S. et al. Expanding the genetic code of Escherichia coli with phosphoserine. Science 333, 1151–1154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo, J., Melançon, C. E. III, Lee, H. S., Groff, D. & Schultz, P. G. Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. Angewandte Chemie Int. Edn 48, 9148–9151 (2009).

    Article  CAS  Google Scholar 

  54. Stieglitz, J. T. & Van Deventer, J. A. High-throughput aminoacyl-tRNA synthetase engineering for genetic code expansion in yeast. ACS Synth. Biol. 11, 2284–2299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, J.-C., Kim, Y., Cho, S. & Park, H.-S. Noncanonical amino acid incorporation in animals and animal cells. Chem. Rev. 124, 12463–12497 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, D. R. & Schultz, P. G. Progress toward the evolution of an organism with an expanded genetic code. Proc Natl Acad Sci USA 96, 4780–4785 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Santoro, S. W., Wang, L., Herberich, B., King, D. S. & Schultz, P. G. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat. Biotechnol. 20, 1044–1048 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Santoro, S. W. & Schultz, P. G. in Directed Enzyme Evolution: Screening and Selection Methods (eds Arnold, F. H. & Georgiou, G.) 291–312 (Humana, 2003).

  59. Schmidt, M. J. & Summerer, D. Directed evolution of orthogonal pyrrolysyl-tRNA synthetases in Escherichia coli for the genetic encoding of noncanonical amino acids. Methods Mol. Biol. 1728, 97–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Furuhata, Y. et al. Directed evolution of aminoacyl-tRNA synthetases through in vivo hypermutation. Nat. Commun. 16, 4832 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dunkelmann, D. L. et al. Adding α,α-disubstituted and β-linked monomers to the genetic code of an organism. Nature 625, 603–610 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Soni, C. et al. A translation-independent directed evolution strategy to engineer aminoacyl-tRNA synthetases. ACS Cent. Sci. 10, 1211–1220 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ficaretta, E. D. et al. Optimized directed evolution of E. coli leucyl-tRNA synthetase adds many noncanonical amino acids into the eukaryotic genetic code including ornithine and N-ϵ-acetyl-methyllysine. Angewandte Chemie Int. Edn 64, e202423172 (2025).

    Article  CAS  Google Scholar 

  64. Galles, G. D., Infield, D. T., Mehl, R. A. & Ahern, C. A. Selection and validation of orthogonal tRNA/synthetase pairs for the encoding of unnatural amino acids across kingdoms. Methods Enzymol. 654, 3–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Koch, N. G. & Budisa, N. in Genetically Incorporated Non-Canonical Amino Acids Methods in Molecular Biology, vol 2676 (eds. Tsai, Y. H. & Elsässer, S. J.) https://doi.org/10.1007/978-1-0716-3251-2_1 (2025).

  66. Nikić, I. et al. Debugging eukaryotic genetic code expansion for site-specific click-PAINT super-resolution microscopy. Angew Chem. Int. Ed. Engl. 55, 16172–16176 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cho, C.-C., Blankenship, L. R., Ma, X., Xu, S. & Liu, W. The pyrrolysyl-tRNA synthetase activity can be improved by a P188 mutation that stabilizes the full-length enzyme. J. Mol. Biol. 434, 167453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yanagisawa, T., Ishii, R., Fukunaga, R., Nureki, O. & Yokoyama, S. Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of pyrrolysyl-tRNA synthetase from the methanogenic archaeon Methanosarcina Mazei. Acta Cryst. F 62, 1031–1033 (2006).

    Article  CAS  Google Scholar 

  69. Taylor, C. J. et al. Engineering mutually orthogonal PylRS/tRNA pairs for dual encoding of functional histidine analogues. Protein Sci. 32, e4640 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kille, S. et al. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth. Biol. 2, 83–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Stokes, A. L. et al. Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Mol. Biosyst. 5, 1032–1038 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  PubMed  Google Scholar 

  73. Wang, W. et al. Genetically encoding unnatural amino acids for cellular and neuronal studies. Nat. Neurosci. 10, 1063–1072 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, Q. & Wang, L. New methods enabling efficient incorporation of unnatural amino acids in yeast. J. Am. Chem. Soc. 130, 6066–6067 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Seitchik, J. L. et al. Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. J. Am. Chem. Soc. 134, 2898–2901 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tang, L. et al. Rational design for high bioorthogonal fluorogenicity of tetrazine-encoded green fluorescent proteins. Nat. Sci. 2, e20220028 (2022).

    Article  CAS  Google Scholar 

  77. Studier, F. W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Tang, L. et al. Construction of ‘small-intelligent’ focused mutagenesis libraries using well-designed combinatorial degenerate primers. BioTechniques 52, 149–158 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Miyake-Stoner, S. J. et al. Generating permissive site-specific unnatural aminoacyl-tRNA synthetases. Biochemistry 49, 1667–1677 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Cooley, R. B., Karplus, P. A. & Mehl, R. A. Gleaning unexpected fruits from hard-won synthetases: probing principles of permissivity in non-canonical amino acid-tRNA synthetases. Chembiochem 15, 1810–1819 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shilova, O., Kotelnikova, P., Proshkina, G., Shramova, E. & Deyev, S. Barnase–Barstar pair: contemporary application in cancer research and nanotechnology. Molecules 26, 6785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, L. & Schultz, P. G. A general approach for the generation of orthogonal tRNAs. Chem. Biol. 8, 883–890 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Cooley, R. B. et al. Structural basis of improved second-generation 3-nitro-tyrosine tRNA synthetases. Biochemistry 53, 1916–1924 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Sungwienwong, I. et al. Improving target amino acid selectivity in a permissive aminoacyl tRNA synthetase through counter-selection. Org. Biomol. Chem. 15, 3603–3610 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bednar, R. M., Karplus, P. A. & Mehl, R. A. Site-specific dual encoding and labeling of proteins via genetic code expansion. Cell Chem. Biol. 30, 343–361 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Young, D. D. et al. An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry 50, 1894–1900 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Miyake-Stoner, S. J. et al. Probing protein folding using site-specifically encoded unnatural amino acids as FRET donors with tryptophan. Biochemistry 48, 5953–5962 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Eddins, A. J. et al. Truncation-free genetic code expansion with tetrazine amino acids for quantitative protein ligations. Bioconjugate Chem. 34, 2243–2254 (2023).

    Article  CAS  Google Scholar 

  89. Ko, W., Kumar, R., Kim, S. & Lee, H. S. Construction of bacterial cells with an active transport system for unnatural amino acids. ACS Synth. Biol. 8, 1195–1203 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Luo, X. et al. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nat. Chem. Biol. 13, 845–849 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fan, C., Ip, K. & Söll, D. Expanding the genetic code of Escherichia coli with phosphotyrosine. FEBS Lett. 590, 3040–3047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Worst, E. G. et al. Cell-free expression with the toxic amino acid canavanine. Bioorg. Med. Chem. Lett. 25, 3658–3660 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. DeLey Cox, V. E., Cole, M. F. & Gaucher, E. A. Incorporation of modified amino acids by engineered elongation factors with expanded substrate capabilities. ACS Synth. Biol. 8, 287–296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hohsaka, T., Kajihara, D., Ashizuka, Y., Murakami, H. & Sisido, M. Efficient incorporation of nonnatural amino acids with large aromatic groups into streptavidin in in vitro protein synthesizing systems. J. Am. Chem. Soc. 121, 34–40 (1999).

    Article  CAS  Google Scholar 

  95. Chen, S. et al. Incorporation of phosphorylated tyrosine into proteins: in vitro translation and study of phosphorylated IκB-α and its interaction with NF-κB. J. Am. Chem. Soc. 139, 14098–14108 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mira, P., Yeh, P. & Hall, B. G. Estimating microbial population data from optical density. PLoS ONE 17, e0276040 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Andrews, B. T., Schoenfish, A. R., Roy, M., Waldo, G. & Jennings, P. A. The rough energy landscape of superfolder GFP is linked to the chromophore. J. Mol. Biol. 373, 476–490 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hirel, P. H., Schmitter, M. J., Dessen, P., Fayat, G. & Blanquet, S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl Acad. Sci. USA 86, 8247–8251 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lundqvist, M. et al. Chromophore pre-maturation for improved speed and sensitivity of split-GFP monitoring of protein secretion. Sci. Rep. 9, 310 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Banerjee, S. & Mazumdar, S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem. 2012, 282574 (2012).

    Article  PubMed  Google Scholar 

  101. Lajoie, M. J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mukai, T. et al. Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon. Sci. Rep. 5, 9699 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Beyer, J. N. et al. Overcoming near-cognate suppression in a release factor 1-deficient host with an improved nitro-tyrosine tRNA synthetase. J. Mol. Biol. 432, 4690–4704 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mehl, R. A. et al. Generation of a bacterium with a 21 amino acid genetic code. J. Am. Chem. Soc. 125, 935–939 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Discovery, C. et al. Chai-1: decoding the molecular interactions of life. Preprint at bioRxiv https://doi.org/10.1101/2024.10.10.615955 (2024).

  106. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the GCE4All Biomedical Technology Optimization and Dissemination Center supported by National Institute of General Medical Science (grant no. RM1-GM144227 to R.A.M.). Graphpad Prism 10.1.1 was used to generate the figures to illustrate efficiency/fidelity and UP50 data.

Author information

Authors and Affiliations

Authors

Contributions

R.C. and R.M. conceived the protocol. N.A., Y.G., R.C. and R.M. developed the protocol, designed the experiments and analyzed the data. N.A. and Y.G. performed the experiments. N.A., Y.G., R.B. and R.C. generated figures. R.C. contributed data. N.A., Y.G., R.B., P.A.K., R.C. and R.M. wrote, provided input into and edited the manuscript.

Corresponding author

Correspondence to Ryan A. Mehl.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Peer review

Peer review information

Nature Protocols thanks Abhishek Chatterjee, Nediljko Budisa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Avila-Crump et al. ACS Chem Biol. 17, 3458–3469 (2022): https://doi.org/10.1021/acschembio.2c00639

Galles et al. Nat Commun. 14, 59 (2023): https://doi.org/10.1038/s41467-022-35761-w

Gottfried-Lee et al. ACS Chem Biol. 17, 3470–3477 (2022): https://doi.org/10.1021/acschembio.2c00640

Supplementary information

Reporting Summary

Supplementary Data

Sequences for Supplementary Tables 11 and 12.

Source data

Source Data Figs. 5, 9, 13, 14, 15, 16, 17, 18 and 20

Tab:Figure5 raw FACS data, Tab:Figure9 raw fluorescence and cell density, Tab:Figure13 raw FACS data, Tab:Figure14 raw FACS data, Tab:Figure15 nRFU data, Tab:Figure16 raw MS data, Tab:Figure17 raw fluorescence and cell density, Tab:Figure18 raw fluorescence and cell density, Tab:Figure20 nRFU data.

Source Data Fig. 11b

Uncropped gel.

Source Data Fig. 12b

Uncropped gel.

Source Data Figure 16b

Uncropped gel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, N.D., Gangarde, Y.M., Bednar, R.M. et al. Selecting aminoacyl-tRNA synthetase/tRNA pairs for efficient genetic encoding of noncanonical amino acids into proteins. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01241-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01241-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing