Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Chemistry
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications chemistry
  3. articles
  4. article
An integrated workflow for the structure elucidation of nanocrystalline powders
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 24 January 2026

An integrated workflow for the structure elucidation of nanocrystalline powders

  • Chiara Sabena  ORCID: orcid.org/0009-0001-4050-14031,
  • Federica Bravetti  ORCID: orcid.org/0000-0003-1045-90452,
  • Natsuki Miyauchi3,
  • Miho Nakafukasako3,
  • Yoshitaka Aoyama  ORCID: orcid.org/0009-0002-1194-17733,
  • Katsuo Asakura3,
  • Kiyotaka Konuma3,
  • Masahiro Hashimoto3,
  • Yusuke Nishiyama  ORCID: orcid.org/0000-0001-7136-11273 &
  • …
  • Michele R. Chierotti  ORCID: orcid.org/0000-0002-8734-60091 

Communications Chemistry , Article number:  (2026) Cite this article

  • 983 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Characterization and analytical techniques
  • NMR spectroscopy
  • Techniques and instrumentation

Abstract

Structural characterization of powder materials, including those synthesized by mechanochemical methods, remains challenging due to the lack of single crystals suitable for X-ray diffraction. Microcrystal-Electron Diffraction (MicroED) enables structure determination from sub-micrometer crystallites but faces limitations, particularly in locating hydrogen atoms and distinguishing light atoms (C, N, O). We present a general workflow that integrates MicroED with high-resolution mass spectrometry, database mining, solution and solid-state NMR, and DFT-D/GIPAW calculations to resolve atomic structures of complex powders, even with unknown composition. The approach is demonstrated on a pyridoxine-N-acetyl-L-cysteine salt, a mechanochemically synthesized adduct for which large single crystals could not be obtained, and on N-formyl-methionyl-leucyl-phenylalanine (fMLF), a bacterial chemoattractant peptide. This strategy enables comprehensive structure resolution, including identification of molecular components, crystal packing, atom assignments and hydrogen positions. Its modularity and scalability make it suitable for a wide range of powder materials, e.g., pigments, pharmaceutical compounds, etc., especially when conventional crystallography fails.

Similar content being viewed by others

MicroED for the study of protein–ligand interactions and the potential for drug discovery

Article 27 October 2021

Effect of solvent-induced packing transitions on N-capped diphenylalanine peptide crystal growth

Article Open access 02 July 2025

Towards end-to-end structure determination from x-ray diffraction data using deep learning

Article Open access 07 September 2024

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. The Supplementary Information includes materials and methods details, DART-HRMS spectra, solution and solid-state NMR data, PXRD patterns and Rietveld refinements, database-mining outputs, GIPAW-calculated NMR parameters, and full comparison tables between experimental and computed chemical shifts for both PN–NAC and fMLF. The MicroED crystal structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 2506116 (PN–NAC) and 2506115 (fMLF). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The DFT-D-optimized structures are provided as separate supplementary files: Supplementary Data 1 and 2 for PN–NAC (optimized with variable and fixed lattice parameters, respectively); and Supplementary Data 3 for fMLF (optimized with variable lattice parameters).

References

  1. Solares-Briones, M. et al. Mechanochemistry: a green approach in the preparation of pharmaceutical cocrystals. Pharmaceutics 13, 790 (2021).

    Google Scholar 

  2. Braga, D., Maini, L. & Grepioni, F. Mechanochemical preparation of co-crystals. Chem. Soc. Rev. 42, 7638–7648 (2013).

    Google Scholar 

  3. Ying, P., Yu, J. & Su, W. Liquid-assisted grinding mechanochemistry in the synthesis of pharmaceuticals. Adv. Synth. Catal. 363, 1246–1271 (2021).

    Google Scholar 

  4. Hasa, D. & Jones, W. Screening for new pharmaceutical solid forms using mechanochemistry: A practical guide. Adv. Drug Deliv. Rev. 117, 147–161 (2017).

    Google Scholar 

  5. Carneiro, R. L. et al. Mechanochemical synthesis and characterization of a novel AAs–Flucytosine drug–drug cocrystal: a versatile model system for green approaches. J. Mol. Struct. 1251, 132052 (2022).

    Google Scholar 

  6. Kamali, N., Gniado, K., McArdle, P. & Erxleben, A. Application of ball milling for highly selective mechanochemical polymorph transformations. Org. Process Res. Dev. 22, 796–802 (2018).

    Google Scholar 

  7. Do, J.-L. & Friščić, T. Mechanochemistry: a force of synthesis. ACS Cent. Sci. 3, 13–19 (2017).

    Google Scholar 

  8. Caira, M. R., Nassimbeni, L. R. & Wildervanck, A. F. Selective formation of hydrogen bonded cocrystals between a sulfonamide and aromatic carboxylic acids in the solid state. J. Chem. Soc., Perkin Trans. 2, 2213–2216 (1995).

    Google Scholar 

  9. Raheem Thayyil, A., Juturu, T., Nayak, S. & Kamath, S. Pharmaceutical co-crystallization: regulatory aspects, design, characterization, and applications. Adv. Pharm. Bull. 10, 203–212 (2020).

    Google Scholar 

  10. Aitipamula, S. et al. Polymorphs, salts, and cocrystals: what’s in a name? Cryst. Growth Des. 12, 2147–2152 (2012).

    Google Scholar 

  11. Karagianni, A., Malamatari, M. & Kachrimanis, K. Pharmaceutical cocrystals: new solid phase modification approaches for the formulation of APIs. Pharmaceutics 10, 18 (2018).

    Google Scholar 

  12. Yadav, A. V., Shete, A. S., Dabke, A. P., Kulkarni, P. V. & Sakhare, S. S. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci. 71, 359–370 (2009).

    Google Scholar 

  13. Vishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. Pharmaceutical co-crystals. J. Pharm. Sci. 95, 499–516 (2006).

    Google Scholar 

  14. Miroshnyk, I., Mirza, S. & Sandler, N. Pharmaceutical co-crystals-an opportunity for drug product enhancement. Expert Opin. Drug Deliv. 6, 333–341 (2009).

    Google Scholar 

  15. Jones, W., Motherwell, W. D. S. & Trask, A. V. Pharmaceutical cocrystals: an emerging approach to physical property enhancement. MRS Bull. 31, 875–879 (2006).

    Google Scholar 

  16. Schultheiss, N. & Newman, A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des. 9, 2950–2967 (2009).

    Google Scholar 

  17. Ross, S. A., Ward, A., Basford, P., McAllister, M. & Douroumis, D. Coprocessing of pharmaceutical cocrystals for high quality and enhanced physicochemical stability. Cryst. Growth Des. 19, 876–888 (2019).

    Google Scholar 

  18. Gokhale, M. Y. & Mantri, R. V. Chapter 4 - API solid-form screening and selection. In Developing Solid Oral Dosage Forms (Second Edition) (eds, Qiu, Y., Chen, Y., Zhang, G. G. Z., Yu, L. & Mantri, R. V.) 85–112 (Academic Press, 2017).

  19. Schultheiss, N. & Henck, J.-O. Role of co-crystals in the Pharmaceutical Development Continuum. In Pharmaceutical Salts and Co-crystals (eds. Wouters, J. & Quéré, L.) 0 (The Royal Society of Chemistry, 2011).

  20. D’Abbrunzo, I. et al. Higher-order multicomponent crystals as a strategy to decrease the IC50 parameter: the case of praziquantel, niclosamide and acetic acid. J. Drug Deliv. Sci. Technol. 109, 106974 (2025).

    Google Scholar 

  21. Pindelska, E., Sokal, A. & Kolodziejski, W. Pharmaceutical cocrystals, salts and polymorphs: advanced characterization techniques. Adv. Drug Deliv. Rev. 117, 111–146 (2017).

    Google Scholar 

  22. Bravetti, F., Hühn, R., Bordignon, S., Reibeling, S. & Schmidt, M. U. Crystal structure and tautomeric state of Pigment Red 48:2 from X-ray powder diffraction and solid-state NMR. Z. f.ür. Kristallographie Crystalline Mater. 239, 283–297 (2024).

    Google Scholar 

  23. Luedeker, D., Gossmann, R., Langer, K. & Brunklaus, G. Crystal engineering of pharmaceutical co-crystals: “NMR crystallography” of niclosamide co-crystals. Cryst. Growth Des. 16, 3087–3100 (2016).

    Google Scholar 

  24. Bravetti, F. et al. Solid-state NMR-driven crystal structure prediction of molecular crystals: the case of mebendazole. Chem. A Eur. J. 28, e202103589 (2022).

    Google Scholar 

  25. Fernandes, J. A., Sardo, M., Mafra, L., Choquesillo-Lazarte, D. & Masciocchi, N. X-ray and NMR crystallography studies of novel theophylline cocrystals prepared by liquid assisted grinding. Cryst. Growth Des. 15, 3674–3683 (2015).

    Google Scholar 

  26. Hodgkinson, P. NMR crystallography of molecular organics. Prog. Nucl. Magn. Reson. Spectrosc. 118–119, 10–53 (2020).

    Google Scholar 

  27. Baias, M. et al. Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy. Phys. Chem. Chem. Phys. 15, 8069–8080 (2013).

    Google Scholar 

  28. Bravetti, F. et al. Zwitterionic or not? Fast and reliable structure determination by combining crystal structure prediction and solid-state NMR. Molecules 28, 1876 (2023).

    Google Scholar 

  29. Khalaji, M., Paluch, P., Potrzebowski, M. J. & Dudek, M. K. Narrowing down the conformational space with solid-state NMR in crystal structure prediction of linezolid cocrystals. Solid State Nucl. Magn. Reson. 121, 101813 (2022).

    Google Scholar 

  30. Dudek, M. K. et al. Crystal structure determination of an elusive methanol solvate – hydrate of catechin using crystal structure prediction and NMR crystallography. CrystEngComm 22, 4969–4981 (2020).

    Google Scholar 

  31. Elena, B., Pintacuda, G., Mifsud, N. & Emsley, L. Molecular structure determination in powders by NMR crystallography from proton spin diffusion. J. Am. Chem. Soc. 128, 9555–9560 (2006).

    Google Scholar 

  32. Harris, R. K. NMR crystallography: the use of chemical shifts. Solid State Sci. 6, 1025–1037 (2004).

    Google Scholar 

  33. Helliwell, J. R. NMR crystallography. In Certifying Central Facility Beamlines for Biological and Chemical Crystallography and Allied Methods (ed. Helliwell, J. R.) 63–64 (Springer Nature, 2025).

  34. Harris, R. K. NMR studies of organic polymorphs & solvates. Analyst 131, 351–373 (2006).

    Google Scholar 

  35. Lahtinen, M., Behera, B., Kolehmainen, E. & Maitra, U. Unraveling the packing pattern leading to gelation using SS NMR and X-ray diffraction: direct observation of the evolution of self-assembled fibers. Soft Matter 6, 1748–1757 (2010).

    Google Scholar 

  36. Kolehmainen, E. et al. Solid state NMR studies of gels derived from low molecular mass gelators. Soft Matter 12, 6015–6026 (2016).

    Google Scholar 

  37. Nonappa, Lahtinen, M., Ikonen, S., Kolehmainen, E. & Kauppinen, R. Solid-state NMR, X-ray diffraction, and thermoanalytical studies towards the identification, isolation, and structural characterization of polymorphs in natural bile acids. Cryst. Growth Des. 9, 4710–4719 (2009).

    Google Scholar 

  38. Guzmán-Afonso, C. et al. Understanding hydrogen-bonding structures of molecular crystals via electron and NMR nanocrystallography. Nat. Commun. 10, 3537 (2019).

    Google Scholar 

  39. Duong, N. T., Aoyama, Y., Kawamoto, K., Yamazaki, T. & Nishiyama, Y. Structure solution of nano-crystalline small molecules using microED and solid-state NMR dipolar-based experiments. Molecules 26, 4652 (2021).

    Google Scholar 

  40. Oikawa, T., Okumura, M., Kimura, T. & Nishiyama, Y. Solid-state NMR meets electron diffraction: Determination of crystalline polymorphs of small organic microcrystalline samples. Acta Crystallogr. Sect. C Struct. Chem. 73, 219–228 (2017).

    Google Scholar 

  41. Nishiyama, Y. Locating hydrogen atoms using fast-MAS solid-state NMR and microED. In NMR Spectroscopy for Probing Functional Dynamics at Biological Interfaces (eds. Bhunia, A., Atreya, H. S. & Sinha, N.), (The Royal Society of Chemistry, 2022).

  42. Rodriguez, J. A. & Gonen, T. Chapter Fourteen - High-resolution macromolecular structure determination by microED, a cryo-EM method. In Methods in Enzymology (ed. Crowther, R. A.) Vol. 579, 369–392 (Academic Press, 2016).

  43. Nannenga, B. L. MicroED methodology and development. Struct. Dyn. 7, 014304 (2020).

    Google Scholar 

  44. Jones, C. G. et al. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018).

    Google Scholar 

  45. Gruene, T. et al. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int Ed. Engl. 57, 16313–16317 (2018).

    Google Scholar 

  46. Kolb, U., Gorelik, T., Kübel, C., Otten, M. T. & Hubert, D. Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy 107, 507–513 (2007).

    Google Scholar 

  47. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev. Biophys. 28, 171–193 (1995).

    Google Scholar 

  48. Nannenga, B. L. & Gonen, T. MicroED: a versatile cryoEM method for structure determination. Emerg. Top. Life Sci. 2, 1–8 (2018).

    Google Scholar 

  49. Hattne, J. et al. MicroED data collection and processing. Acta Crystallogr. A Found. Adv. 71, 353–360 (2015).

    Google Scholar 

  50. Nannenga, B. L. & Gonen, T. MicroED opens a new era for biological structure determination. Curr. Opin. Struct. Biol. 40, 128–135 (2016).

    Google Scholar 

  51. Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014).

    Google Scholar 

  52. van Genderen, E. et al. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector. Acta Crystallogr. A Found. Adv. 72, 236–242 (2016).

    Google Scholar 

  53. Shi, D., Nannenga, B. L., Iadanza, M. G. & Gonen, T. Three-dimensional electron crystallography of protein microcrystals. Elife 2, e01345 (2013).

    Google Scholar 

  54. Bernasconi, D. et al. Selective synthesis of a salt and a cocrystal of the ethionamide–salicylic acid system. Cryst. Growth Des. 20, 906–915 (2020).

    Google Scholar 

  55. Chierotti, M. et al. From molecular crystals to salt co-crystals of barbituric acid via the carbonate ion and an improvement of the solid state properties. CrystEngComm 15, 7598–7605 (2013).

    Google Scholar 

  56. Maiorca, B. et al. Investigation of solid-state forms between p-aminosalicylic acid and adenine: Exploring salts, cocrystals and their polymorphism. J. Drug Deliv. Sci. Technol. 115, 107762 (2026).

    Google Scholar 

  57. Gumbert, S. D. et al. Crystal structure and tautomerism of Pigment Yellow 138 determined by X-ray powder diffraction and solid-state NMR. Dyes Pigments 131, 364–372 (2016).

    Google Scholar 

  58. Chierotti, M. R. & Gobetto, R. Solid-state NMR studies of weak interactions in supramolecular systems. Chem. Commun. 1621, 1634 (2008).

    Google Scholar 

  59. Duong, N. T., Gan, Z. & Nishiyama, Y. Selective 1H-14N distance measurements by 14N overtone solid-state NMR spectroscopy at fast MAS. Front. Mol. Biosci. 8, 645347 (2021).

    Google Scholar 

  60. Duong, N. T. et al. Accurate 1H-14N distance measurements by phase-modulated RESPDOR at ultra-fast MAS. J. Magn. Reson 308, 106559 (2019).

    Google Scholar 

  61. Duong, N. T., Raran-Kurussi, S., Nishiyama, Y. & Agarwal, V. Can proton-proton recoupling in fully protonated solids provide quantitative, selective and efficient polarization transfer?. J. Magn. Reson. 317, 106777 (2020).

    Google Scholar 

  62. Geppi, M., Mollica, G., Borsacchi, S. & Veracini, C. A. Solid-state NMR studies of pharmaceutical systems. Appl. Spectrosc. Rev. 43, 202–302 (2008).

    Google Scholar 

  63. Xu, Y., Southern, S. A., Szell, P. M. J. & Bryce, D. L. The role of solid-state nuclear magnetic resonance in crystal engineering. CrystEngComm 18, 5236–5252 (2016).

    Google Scholar 

  64. Berendt, R. T., Sperger, D. M., Munson, E. J. & Isbester, P. K. Solid-state NMR spectroscopy in pharmaceutical research and analysis. TrAC Trends Anal. Chem. 25, 977–984 (2006).

    Google Scholar 

  65. Sardo, M., Rocha, J. & Mafra, L. Solid-state NMR applications in the structural elucidation of small molecules. In Structure Elucidation in Organic Chemistry 173–240 (John Wiley & Sons, Ltd, 2015).

  66. Cossard, A. et al. Advanced feature analysis for enhancing cocrystal prediction. Chemometrics Intell. Lab. Syst. 257, 105318 (2025).

    Google Scholar 

  67. Marasco, W. A. et al. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J. Biol. Chem. 259, 5430–5439 (1984).

    Google Scholar 

  68. Salamah, M. F. et al. The formyl peptide fMLF primes platelet activation and augments thrombus formation. J. Thrombosis Haemost. 17, 1120–1133 (2019).

    Google Scholar 

  69. Palatinus, L. et al. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science 355, 166–169 (2017).

    Google Scholar 

  70. Brázda, P., Palatinus, L. & Babor, M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science 364, 667–669 (2019).

    Google Scholar 

  71. Stein, M. & Heimsaat, M. Intermolecular interactions in molecular organic crystals upon relaxation of lattice parameters. Crystals 9, 665 (2019).

    Google Scholar 

  72. van de Streek, J. & Neumann, M. A. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations. Acta Cryst. B 66, 544–558 (2010).

    Google Scholar 

  73. Aramini, A. et al. Unexpected salt/cocrystal polymorphism of the ketoprofen–lysine system: discovery of a new ketoprofen–l-lysine salt polymorph with different physicochemical and pharmacokinetic properties. Pharmaceuticals 14, 555 (2021).

    Google Scholar 

  74. Bajaj, V. S., van der Wel, P. C. A. & Griffin, R. G. Observation of a low-temperature, dynamically driven structural transition in a polypeptide by solid-state NMR spectroscopy. J. Am. Chem. Soc. 131, 118–128 (2009).

    Google Scholar 

  75. Nishiyama, Y. et al. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100 kHz MAS. Solid State Nucl. Magn. Reson. 66–67, 56–61 (2015).

    Google Scholar 

  76. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens Matter 21, 395502 (2009).

    Google Scholar 

  77. Lee, K., Murray, ÉD., Kong, L., Lundqvist, B. I. & Langreth, D. C. A higher-accuracy van der waals density functional. Phys. Rev. B 82, 081101 (2010).

    Google Scholar 

  78. Hamada, I. van der Waals density functional made accurate. Phys. Rev. B 89, 121103 (2014).

    Google Scholar 

  79. Prandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput Mater. 4, 72 (2018).

    Google Scholar 

  80. Charpentier, T. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. Solid State Nucl. Magn. Reson. 40, 1–20 (2011).

    Google Scholar 

  81. Dal Corso, A. Pseudopotentials periodic table: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).

    Google Scholar 

  82. Franco, F., Baricco, M., Chierotti, M. R., Gobetto, R. & Nervi, C. Coupling solid-state NMR with GIPAW ab initio calculations in metal hydrides and borohydrides. J. Phys. Chem. C. 117, 9991–9998 (2013).

    Google Scholar 

  83. Harris, R. K., Hodgkinson, P., Pickard, C. J., Yates, J. R. & Zorin, V. Chemical shift computations on a crystallographic basis: some reflections and comments. Magn. Reson. Chem. 45, S174–S186 (2007).

    Google Scholar 

  84. Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst. 51, 210–218 (2018).

    Google Scholar 

Download references

Acknowledgements

M.R.C. and C.S. acknowledge support from the project CH4.0 under the MUR program “Dipartimenti di Eccellenza 2023-2027” (CUP: D13C22003520001), the project FLIPPER (PRIN2022 n. 202224KAX8; CUP D53D23010020006) funded by European Union - Next Generation EU, Mission 4 Component 1, the project NICE (PRIN2020 n. 2020Y2CZJ2; CUP D13C22000440001). F.B. acknowledges funding by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

  1. Department of Chemistry, University of Turin, Turin, Italy

    Chiara Sabena & Michele R. Chierotti

  2. Institute of Inorganic and Analytical Chemistry, Goethe University, Frankfurt am Main, Germany

    Federica Bravetti

  3. JEOL Ltd., Akishima, Tokyo, Japan

    Natsuki Miyauchi, Miho Nakafukasako, Yoshitaka Aoyama, Katsuo Asakura, Kiyotaka Konuma, Masahiro Hashimoto & Yusuke Nishiyama

Authors
  1. Chiara Sabena
    View author publications

    Search author on:PubMed Google Scholar

  2. Federica Bravetti
    View author publications

    Search author on:PubMed Google Scholar

  3. Natsuki Miyauchi
    View author publications

    Search author on:PubMed Google Scholar

  4. Miho Nakafukasako
    View author publications

    Search author on:PubMed Google Scholar

  5. Yoshitaka Aoyama
    View author publications

    Search author on:PubMed Google Scholar

  6. Katsuo Asakura
    View author publications

    Search author on:PubMed Google Scholar

  7. Kiyotaka Konuma
    View author publications

    Search author on:PubMed Google Scholar

  8. Masahiro Hashimoto
    View author publications

    Search author on:PubMed Google Scholar

  9. Yusuke Nishiyama
    View author publications

    Search author on:PubMed Google Scholar

  10. Michele R. Chierotti
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.N. and M.R.C. conceived the study. Y.N., M.R.C. and C.S. designed the work. C.S. performed solution/solid-state NMR. N.M., M.N. and Y.A. collected MicroED data. K.A., K.K. and M.H. collected high-resolution MS data. F.B. and Y.N. performed DFT-D/GIPAW calculations. F.B. performed PXRD analyses. C.S. and Y.N. performed database analysis. All authors contributed to interpretation of data. C.S., Y.N., M.R.C. wrote the first draft of the manuscript. All authors contributed to discussions and to writing and revising the final draft.

Corresponding authors

Correspondence to Yusuke Nishiyama or Michele R. Chierotti.

Ethics declarations

Competing interests

The authors C.S., F.B., and M.R.C. declare no competing interests. Authors N.M., M.N., Y.A., K.A., K.K., M.H. and Y.N. are full-time employees of JEOL Ltd. The company had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Peer review

Peer review information

Communications Chemistry thanks Florian Schulz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabena, C., Bravetti, F., Miyauchi, N. et al. An integrated workflow for the structure elucidation of nanocrystalline powders. Commun Chem (2026). https://doi.org/10.1038/s42004-026-01902-1

Download citation

  • Received: 07 August 2025

  • Accepted: 09 January 2026

  • Published: 24 January 2026

  • DOI: https://doi.org/10.1038/s42004-026-01902-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Chemistry (Commun Chem)

ISSN 2399-3669 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing