Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults

Abstract

Older adults represent a vulnerable population with elevated risk for numerous morbidities. To explore the association of the microbiome with aging and age-related susceptibilities, including frailty and infectious disease risk, we conducted a longitudinal study of the skin, oral, and gut microbiota in 47 community- or skilled nursing facility-dwelling older adults versus younger adults. We found that microbiome changes were not associated with chronological age so much as frailty; we identified prominent changes in microbiome features associated with susceptibility to pathogen colonization and disease risk, including diversity, stability, heterogeneity and biogeographic determinism, which were moreover associated with a loss of Cutibacterium acnes in the skin microbiome. Strikingly, the skin microbiota were also the primary reservoir for antimicrobial resistance, clinically important pathobionts and nosocomial strains, suggesting a potential role particularly for the skin microbiome in disease risk and dissemination of multidrug resistant pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design.
Fig. 2: Instability, hyperdiversification, heterogeneity and biogeographic divergence in the aging microbiome.
Fig. 3: Compositional differences in the microbiota of older adults.
Fig. 4: Associations among age, frailty and the skin microbiome.
Fig. 5: Strain-level diversity, heterogeneity, and differential abundance of clades.
Fig. 6: The skin is a major reservoir of pathobionts and plasmid-borne antimicrobial resistance in older adults.

Similar content being viewed by others

Data availability

Metagenomic sequence files from participants who consented to making their deidentified metagenomic data available in public access data can be accessed in National Center for Biotechnology Information BioProject PRJNA699281. HMP data can be accessed from https://www.hmpdacc.org/hmp/; SRS IDs of the samples used in this study are detailed in Supplementary Table 2. Oh et al.29,30 data can be accessed via National Center for Biotechnology Information BioProject PRJNA46333.

References

  1. Franceschi, C. et al. The continuum of aging and age-related diseases: Common mechanisms but different rates. Front. Med. 5, 61 (2018).

    Article  Google Scholar 

  2. Inouye, S. K., Studenski, S., Tinetti, M. E. & Kuchel, G. A. Geriatric syndromes: Clinical, research and policy implications of a core geriatric concept. J. Am. Geriatrics Soc. 55, 780 (2007).

    Article  Google Scholar 

  3. Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koren, O. et al. Colloquium Paper: Human oral, gut, and plaque microbiota in patients with atherosclerosis. PNAS 108, 4592 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Xue, Q. The frailty syndrome: Definition and natural history. Clin. Geriatr. Med 27, 1–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meehan, C. J., Langille, M. G. I. & Beiko, R. G. Frailty and the microbiome. Top. Gerontol. Geriatr. 41, 54–65 (2015).

    Google Scholar 

  9. Rockwood, K. et al. A frailty index based on deficit accumulation quantifies mortality risk in humans and in mice. Sci. Rep. 7, 43068 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitnitski, A., Howlett, S. E. & Rockwood, K. Heterogeneity of human aging and its assessment. J. Gerontol. A Biol. Sci. Med Sci. 72, 877–884 (2017).

    PubMed  Google Scholar 

  11. Ferrucci, L. & Kuchel, G. A. Heterogeneity of aging: individual risk factors, mechanisms, patient priorities, and outcomes.J. Am. Geriatr. Soc. 69, 610–612 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nguyen, Q. D. Health heterogeneity in older adults: Exploration in the Canadian longitudinal study on aging.J. Am. Geriatr. Soc. 69, 678–687 (2021).

    Article  PubMed  Google Scholar 

  13. Kuchel, G. A. Inclusion of older adults in research: ensuring relevance, feasibility, and rigor. J. Am. Geriatrics Soc. 67, 203–204 (2019).

    Article  Google Scholar 

  14. Haran, J. P., Bucci, V., Dutta, P., Ward, D. & McCormick, B. The nursing home elder microbiome stability and associations with age, frailty, nutrition and physical location. J. Med. Microbiol. 67, 40–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nat. (Lond.) 488, 178–184 (2012).

    Article  Google Scholar 

  16. Gómez-Zorrilla, S. et al. Prospective observational study of prior rectal colonization status as a predictor for subsequent development of Pseudomonas aeruginosa clinical infections. Antimicrob. Agents Chemother. 59, 5213–5219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barbier, F. et al. Infection-related ventilator-associated complications in ICU patients colonised with extended-spectrum β-lactamase-producing Enterobacteriaceae. Intensive Care Med. 44, 616–626 (2018).

    Article  PubMed  Google Scholar 

  18. Grasselli, G. et al. Gastrointestinal colonization with multidrug-resistant Gram-negative bacteria during extracorporeal membrane oxygenation: effect on the risk of subsequent infections and impact on patient outcome.Ann. Intensive Care 18, 141 (2019).

    Article  Google Scholar 

  19. Nelson, R. E. et al. Methicillin-resistant Staphylococcus aureus colonization and pre- and post-hospital discharge infection risk. Clin. Infect. Dis. 68, 545–553 (2019).

    Article  PubMed  Google Scholar 

  20. Gmehlin, C. G. & Silvia Munoz-Price, L. Coronavirus disease 2019 (COVID-19) in long-term care facilities: A review of epidemiology, clinical presentations, and containment interventions.Infect. Control Hosp. Epidemiol. 43, 504–509 (2022).

    Article  PubMed  Google Scholar 

  21. Aleman, F. D. D. & Valenzano, D. R. Microbiome evolution during host aging. PLoS Pathog. 15, e1007727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota. BMC Microbiol. 19, 236 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dréno, B. et al. Microbiome in healthy skin, update for dermatologists. J. Eur. Acad. Dermatol. Venereol. 30, 2038 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Prescott, S. L. et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. 10, 29 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maguire, M. & Maguire, G. The role of microbiota, and probiotics and prebiotics in skin health. Arch. Dermatol Res 309, 411–421 (2017).

    Article  PubMed  Google Scholar 

  26. Willis, J. R. & Gabaldón, T. The human oral microbiome in health and disease: From sequences to ecosystems. Microorganisms 8, 308 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  27. Huang, S. et al. Human skin, oral, and gut microbiomes predict chronological age. mSystems 5, e00630–19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou, W. et al. Host-specific evolutionary and transmission dynamics shape the functional diversification of Staphylococcus epidermidis in human skin. Cell 180, 454–470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oh, J., Byrd, A. L., Park, M., Kong, H. H. & Segre, J. A. Temporal stability of the human skin microbiome. Cell 165, 854–866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Z. et al. New insights into the skin microbial communities and skin aging. Front. Microbiol. 11, 565549 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shibagaki, N. et al. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria.Sci. Rep. 7, 10567 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Roghmann, M. et al. Comparison of the microbiota of older adults living in nursing homes and the community. mSphere 2, 210 (2017).

    Article  Google Scholar 

  34. Nagase, S. et al. Distinct skin microbiome and skin physiological functions between bedridden older patients and healthy people: A single-center study in Japan.Front. Med. 7, 101 (2020).

    Article  Google Scholar 

  35. Ranjan, R., Rani, A., Metwally, A., McGee, H. S. & Perkins, D. L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469, 967–977 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Brumfield, K. D., Huq, A., Colwell, R. R., Olds, J. L. & Leddy, M. B. Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data. PLoS One 15, e0228899 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, 146 (2001).

    Article  Google Scholar 

  38. Washburn, R. A., Smith, K. W., Jette, A. M. & Janney, C. A. The physical activity scale for the elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 46, 153–162 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Hills, R. D. Gut microbiome: Profound implications for diet and disease.Nutrients 11, 1613 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  40. Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Peterson, J. et al. The NIH Human microbiome project. Genome Res. 19, 2317–2323 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Human Microbiome Project Consortium A framework for human microbiome research. Nature 486, 215–221 (2012).

  43. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dickson, I. Stability and individuality of adult microbiota. Nature Milestones June, S11 (2019).

    Google Scholar 

  45. Oh, J. et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res. 23, 2103–2114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nagpal, R. et al. Gut microbiome and aging: Physiological and mechanistic insights. Nutr. healthy aging 4, 267–285 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Whelan, F. J. et al. The loss of topography in the microbial communities of the upper respiratory tract in the elderly. Ann. ATS 11, 513–521 (2014).

    Article  Google Scholar 

  48. Kerns, M. L., et al. Fitzpatrick’s Dermatology. (McGraw-Hill Education, 2019).

  49. Dréno, B. et al. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J. Eur. Acad. Dermatol. Venereol. 32, 5–14 (2018).

    Article  PubMed  Google Scholar 

  50. Claesen, J. et al. A Cutibacterium acnes antibiotic modulates human skin microbiota composition in hair follicles. Sci. Transl. Med. 12, eaay5445 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bolla, B. S. et al. Cutibacterium acnes regulates the epidermal barrier properties of HPV-KER human immortalized keratinocyte cultures. Sci. Rep. 10, 1–13 (2020).

    Article  Google Scholar 

  52. Jasson, F. et al. Different strains of Propionibacterium acnes modulate differently the cutaneous innate immunity. Exp. Dermatol. 22, 587–592 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Otto, M. Staphylococcus epidermidis: the ‘accidental’ pathogen. Nat. Rev. Microbiol. 7, 555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Magne, F. The Firmicutes/Bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients?. Nutrients 12, 1474 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  55. Castaner, O. et al. The gut microbiome profile in obesity: A systematic review. Int. J. Endocrinol. 2018, 4095789 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Park, S., Chung, H. & Lee, M. Clinical and microbiological characteristics of six staphylococcus pettenkoferi isolates from blood samples. Ann. Lab. Med. 35, 250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aubin, G. G. et al. Propionibacterium namnetense sp. nov., isolated from a human bone infection. Int J. Syst. Evol. Microbiol 66, 3393–3399 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Yan, Y., Nguyen, L. H., Franzosa, E. A. & Huttenhower, C. Strain-level epidemiology of microbial communities and the human microbiome. Genome Med. 12, 71 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sonnenborn, U. Escherichia coli strain Nissle 1917—from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol. Lett. 363, fnw212 (2016).

    Article  PubMed  Google Scholar 

  61. Lim, J. Y., Yoon, J. W. & Hovde, C. J. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol. Biotechnol. 20, 5 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Conlan, S. et al. Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol. 13, R64 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mitchell, J. Streptococcus mitis: Walking the line between commensalism and pathogenesis. Mol. Oral. Microbiol. 26, 89–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Brinkac, L., Voorhies, A., Gomez, A. & Nelson, K. E. The threat of antimicrobial resistance on the human microbiome. Microb. Ecol. 74, 1001 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Keller, R., Pedroso, M. Z., Ritchmann, R. & Silva, R. M. Occurrence of virulence-associated properties in Enterobacter cloacae. Infect. Immun. 66, 645–649 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamamoto, S. & Shinoda, S. [Iron uptake mechanisms of pathogenic bacteria].Nihon Saikingaku Zasshi 51, 523–547 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Saffrey, M. & Saffrey, M. Aging of the mammalian gastrointestinal tract: a complex organ system. AGE 36, 1019–1032 (2014).

    Article  Google Scholar 

  68. Sovran, B. et al. Age-associated impairment of the mucus barrier function is associated with profound changes in microbiota and immunity. Sci. Rep. 9, 1–13 (2019).

    Article  CAS  Google Scholar 

  69. Muller, C. et al. The intraperitoneal transcriptome of the opportunistic pathogen Enterococcus faecalis in Mice. PLoS One 10, e0126143 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vrancianu, C. O., Popa, L. I., Bleotu, C. & Chifiriuc, M. C. Targeting plasmids to limit acquisition and transmission of antimicrobial resistance. Front Microbiol 11, 761 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Orlek, A. et al. Plasmid classification in an era of whole-genome sequencing: Application in studies of antibiotic resistance epidemiology. Front. Microbiol. 8, 182 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kao, K. et al. Risk factors of methicillin-resistant Staphylococcus aureus infection and correlation with nasal colonization based on molecular genotyping in medical intensive care units: A prospective observational study. Medicine (Baltimore) 94, e1100 (2015).

    Article  Google Scholar 

  73. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Flowers, L. & Grice, E. A. The skin microbiota: Balancing risk and reward. Cell Host Microbe 28, 190–200 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Plewig, G. & Kligman, A. M. Proliferative activity of the sebaceous glands of the aged.J. Invest. Dermatol. 70, 314–317 (1978).

    Article  CAS  PubMed  Google Scholar 

  76. Luna, P. C. Skin microbiome as years go by. Am. J. Clin. Dermatol. 21, 12–17 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rockwood, K., Theou, O. & Mitnitski, A. What are frailty instruments for? Age Ageing 44, 545–547 (2015).

    Article  PubMed  Google Scholar 

  78. Wade, W. G. The oral microbiome in health and disease. Pharmacol. Res. 69, 137–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. McInnes, P. & Cutting, M. Human Microbiome Project: Core Microbiome Sampling Protocol A HMP Protocol # 07-001 (2010). https://www.hmpdacc.org/hmp/doc/HMP_MOP_Version12_0_072910.pdf

  80. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article  Google Scholar 

  81. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou, W. et al. ReprDB and panDB: minimalist databases with maximal microbial representation. Microbiome 6, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kostic, A. D. et al. PathSeq: A comprehensive computational tool for the identification or discovery of microorganisms by deep sequencing of human tissue. Nat. Biotechnol. 29, 393–396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yue, J. C. & Clayton, M. K. A similarity measure based on species proportions. Commun. Stat. Theory Methods 34, 2123–2131 (2005).

    Article  Google Scholar 

  87. Liaw, A. & Weiner, M. Classification and Regression by randomForest.R News 2, 18–22 (2002).

    Google Scholar 

  88. Emiola, A., Zhou, W. & Oh, J. Metagenomic growth rate inferences of strains in situ. Sci. Adv. 6, eaaz2299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, 733 (2016).

    Article  Google Scholar 

  90. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Treangen, T. J., Ondov, B. D., Koren, S. & Phillippy, A. M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15, 524 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hong, C. et al. PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples. Microbiome 2, 33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chen, L. et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 33, 325 (2005).

    Article  Google Scholar 

  94. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2014).

    Article  PubMed  Google Scholar 

  95. Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, D., Liu, C., Luo, R., Sadakane, K. & Lam, T. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Krawczyk, P. S., Lipinski, L. & Dziembowski, A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46, e35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 11, 119 (2010).

    Article  Google Scholar 

  99. Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 1–15 (2018).

    Article  Google Scholar 

  100. R Core Team. R: A language and environment for statistical computing. 3.4.0 (2017). https://www.R-project.org/

Download references

Acknowledgements

Funding for this project were provided by internal UConn support via the UConn Research Excellence Program and the UConn Microbiome Research Seed Grant. Investigator salaries were additionally supported by the National Institute on Aging (R56 AG060746 and P30 AG067988) and Claude D. Pepper Older Americans Independence Center at UConn. JO is additionally supported by the National Institutes of Health (DP2 GM126893-01, K22 AI119231-01, 1U54NS105539, 1 U19 AI142733 and 1 R21 AR075174), the National Science Foundation (1853071), the American Cancer Society, the Leo Foundation and the Mackenzie Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P.J.L., G.A.K., J.T.R. and J.O. Methodology: J.O., J.T.R. and G.A.K. Software: P.J.L., W.Z. and J.O. Validation: P.J.L., W.Z. and J.O. Formal analysis: P.J.L. and W.Z. Investigation: P.J.L., A.S., S.D., A.Y.V., E.F. and W.Z. Resources: G.A.K., J.T.R., J.O. Data Curation: J.T.R., A.S., S.D., W.Z. and J.O. Writing – Original Draft: P.J.L. and W.Z. Writing – Review & Editing: J.O., GK, J.T.R., A.S., S.D., A.Y.V. and W.Z. Visualization: P.J.L. and W.Z. Supervision: G.A.K., J.T.R. and J.O. Project Administration: J.T.R. and J.O. Funding acquisition: G.A.K., J.T.R., JG, O.K.C. and J.O.

Corresponding author

Correspondence to Julia Oh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Falk Hildebrand and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information:

Supplementary figure and table legends and supplementary Figs.1–23.

Reporting Summary

Supplementary Tables 1–7.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larson, P.J., Zhou, W., Santiago, A. et al. Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults. Nat Aging 2, 941–955 (2022). https://doi.org/10.1038/s43587-022-00287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-022-00287-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research