Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the biology of aging with mTOR inhibitors

Abstract

Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential healthspan targets of rapamycin.
Fig. 2: An overview of the mTORC1 signaling pathway with areas of potential pharmaceutical inhibition highlighted.
Fig. 3: The known and unknown effects of rapalog-dosing regimens on metabolic health, the immune system, healthspan and longevity in humans and mice.

Similar content being viewed by others

References

  1. Castellano, B. M. et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann–Pick C1 signaling complex. Science 355, 1306–1311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Orozco, J. M. et al. Dihydroxyacetone phosphate signals glucose availability to mTORC1. Nat. Metab. 2, 893–901 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lamming, D. W. & Bar-Peled, L. Lysosome: the metabolic signaling hub. Traffic 20, 27–38 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Simcox, J. & Lamming, D. W. The central moTOR of metabolism. Dev. Cell 57, 691–706 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1196 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Kapahi, P. et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885–890 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Powers, R. W. 3rd, Kaeberlein, M., Caldwell, S. D., Kennedy, B. K. & Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174–184 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vellai, T. et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Hansen, M. et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6, 95–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Syntichaki, P., Troulinaki, K. & Tavernarakis, N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445, 922–926 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Medvedik, O., Lamming, D. W., Kim, K. D. & Sinclair, D. A. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol. 5, e261 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sharp, Z. D. & Bartke, A. Evidence for down-regulation of phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent translation regulatory signaling pathways in Ames dwarf mice. J. Gerontol. A Biol. Sci. Med. Sci. 60, 293–300 (2005).

    Article  PubMed  Google Scholar 

  13. Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arif, A. et al. EPRS is a critical mTORC1–S6K1 effector that influences adiposity in mice. Nature 542, 357–361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsai, S. et al. Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity. J. Clin. Invest. 125, 2952–2964 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tsai, S. Y. et al. Increased 4E-BP1 expression protects against diet-induced obesity and insulin resistance in male mice. Cell Rep. 16, 1903–1914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, J. J. et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep. 4, 913–920 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, H. M., Diaz, V., Walsh, M. E. & Zhang, Y. Moderate lifelong overexpression of tuberous sclerosis complex 1 (TSC1) improves health and survival in mice. Sci. Rep. 7, 834 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Powolny, A. A., Singh, S. V., Melov, S., Hubbard, A. & Fisher, A. L. The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation. Exp. Gerontol. 46, 441–452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robida-Stubbs, S. et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 15, 713–724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rice, K. M., Kinnard, R. S., Wright, G. L. & Blough, E. R. Aging alters vascular mechanotransduction: pressure-induced regulation of p70S6k in the rat aorta. Mech. Ageing Dev. 126, 1213–1222 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Solon-Biet, S. M. et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19, 418–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilkinson, J. E. et al. Rapamycin slows aging in mice. Aging Cell 11, 675–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Lamming, D. W., Ye, L., Sabatini, D. M. & Baur, J. A. Rapalogs and mTOR inhibitors as anti-aging therapeutics. J. Clin. Invest. 123, 980–989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28, 721–726 (1975).

    Article  CAS  Google Scholar 

  28. Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Scaiola, A. et al. The 3.2-Å resolution structure of human mTORC2. Sci. Adv. 6, eabc1251 (2020).

  30. Gaubitz, C. et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol. Cell 58, 977–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Yip, C. K., Murata, K., Walz, T., Sabatini, D. M. & Kang, S. A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 38, 768–774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hahn, O. et al. A nutritional memory effect counteracts benefits of dietary restriction in old mice. Nat. Metab. 1, 1059–1073 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Flurkey, K., Astle, C. M. & Harrison, D. E. Life extension by diet restriction and N-acetyl-l-cysteine in genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 65, 1275–1284 (2010).

    Article  PubMed  Google Scholar 

  36. Miller, R. A. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 66, 191–201 (2011).

    Article  PubMed  Google Scholar 

  37. Arriola Apelo, S. I., Pumper, C. P., Baar, E. L., Cummings, N. E. & Lamming, D. W. Intermittent administration of rapamycin extends the life span of female C57BL/6J mice. J. Gerontol. A Biol. Sci. Med. Sci. 71, 876–881 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bitto, A. et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. eLife 5, e16351 (2016).

  39. Chen, C., Liu, Y., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Anisimov, V. N. et al. Rapamycin extends maximal lifespan in cancer-prone mice. Am. J. Pathol. 176, 2092–2097 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anisimov, V. N. et al. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10, 4230–4236 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Shindyapina, A. V. et al. Rapamycin treatment during development extends life span and health span of male mice and Daphnia magna. Sci. Adv. 8, eabo5482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aiello, G. et al. Transient rapamycin treatment during developmental stage extends lifespan in Mus musculus and Drosophila melanogaster. EMBO Rep. 23, e55299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Strong, R. et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 15, 872–884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Strong, R. et al. Lifespan benefits for the combination of rapamycin plus acarbose and for captopril in genetically heterogeneous mice. Aging Cell 21, e13724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moloney, P. B., Cavalleri, G. L. & Delanty, N. Epilepsy in the mTORopathies: opportunities for precision medicine. Brain Commun. 3, fcab222 (2021).

    Google Scholar 

  47. Sills, A. M., Artavia, J. M., DeRosa, B. D., Ross, C. N. & Salmon, A. B. Long-term treatment with the mTOR inhibitor rapamycin has minor effect on clinical laboratory markers in middle-aged marmosets. Am. J. Primatol. 81, e22927 (2019).

    Article  PubMed  Google Scholar 

  48. Urfer, S. R. et al. A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. GeroScience 39, 117–127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Creevy, K. E., Akey, J. M., Kaeberlein, M., Promislow, D. E. L. & Dog Aging Project, C. An open science study of ageing in companion dogs. Nature 602, 51–57 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Orgel, L. E. The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sci. USA 49, 517–521 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ke, Z. et al. Translation fidelity coevolves with longevity. Aging Cell 16, 988–993 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mieulet, V. et al. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am. J. Physiol. Cell Physiol. 293, C712–C722 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pedersen, S., Celis, J. E., Nielsen, J., Christiansen, J. & Nielsen, F. C. Distinct repression of translation by wortmannin and rapamycin. Eur. J. Biochem. 247, 449–456 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jefferies, H. B. et al. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 16, 3693–3704 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Steffen, K. K. et al. Yeast life span extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell 133, 292–302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Park, Y., Reyna-Neyra, A., Philippe, L. & Thoreen, C. C. mTORC1 balances cellular amino acid supply with demand for protein synthesis through post-transcriptional control of ATF4. Cell Rep. 19, 1083–1090 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Byles, V. et al. Hepatic mTORC1 signaling activates ATF4 as part of its metabolic response to feeding and insulin. Mol. Metab. 53, 101309 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Condon, K. J. et al. Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction. Proc. Natl Acad. Sci. USA 118, e2022120118 (2021).

  61. De Sousa-Coelho, A. L., Marrero, P. F. & Haro, D. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem. J. 443, 165–171 (2012).

    Article  PubMed  Google Scholar 

  62. Kim, K. H. et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Arif, A. et al. Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. Mol. Cell 35, 164–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guo, M., Yang, X. L. & Schimmel, P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat. Rev. Mol. Cell Biol. 11, 668–674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alvers, A. L. et al. Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5, 847–849 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Hars, E. S. et al. Autophagy regulates ageing in C. elegans. Autophagy 3, 93–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Lionaki, E., Markaki, M. & Tavernarakis, N. Autophagy and ageing: insights from invertebrate model organisms. Ageing Res. Rev. 12, 413–428 (2012).

  68. Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cuervo, A. M. et al. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1, 131–140 (2005).

    Article  PubMed  Google Scholar 

  70. Han, X. et al. Influence of long-term caloric restriction on myocardial and cardiomyocyte contractile function and autophagy in mice. J. Nutr. Biochem. 23, 1592–1599 (2012).

  71. Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043–1055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, M. & Miller, R. A. Fibroblasts from long-lived mutant mice exhibit increased autophagy and lower TOR activity after nutrient deprivation or oxidative stress. Aging Cell 11, 668–674 (2012).

    Article  PubMed  Google Scholar 

  73. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dossou, A. S. & Basu, A. The emerging roles of mTORC1 in macromanaging autophagy. Cancers 11, 1422 (2019).

  76. Zhang, C. & Cuervo, A. M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med. 14, 959–965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hua, Y. et al. Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy. Basic Res. Cardiol. 106, 1173–1191 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Brandhorst, S. et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 22, 86–99 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Majumder, S., Richardson, A., Strong, R. & Oddo, S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS ONE 6, e25416 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Spilman, P. et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS ONE 5, e9979 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl. Med. 6, 268ra179 (2014).

    Article  PubMed  Google Scholar 

  83. Mannick, J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci. Transl. Med. 10, eaaq1564 (2018).

  84. Mannick, J. B. et al. Targeting the biology of ageing with mTOR inhibitors to improve immune function in older adults: phase 2b and phase 3 randomised trials. Lancet Healthy Longev. 2, e250–e262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Goldberg, E. L., Smithey, M. J., Lutes, L. K., Uhrlaub, J. L. & Nikolich-Zugich, J. Immune memory-boosting dose of rapamycin impairs macrophage vesicle acidification and curtails glycolysis in effector CD8 cells, impairing defense against acute infections. J. Immunol. 193, 757–763 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Phillips, E. J. & Simons, M. J. P. Rapamycin not dietary restriction improves resilience against pathogens: a meta-analysis. GeroScience 45, 1263–1270 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Neff, F. et al. Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest. 123, 3272–3291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, J. et al. mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc. Natl Acad. Sci. USA 106, 7840–7845 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Murakami, M. et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol. Cell. Biol. 24, 6710–6718 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, K. W. et al. Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells Dev. 19, 557–568 (2010).

    CAS  Google Scholar 

  91. Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Greenberger, S. et al. Rapamycin suppresses self-renewal and vasculogenic potential of stem cells isolated from infantile hemangioma. J. Invest. Dermatol. 131, 2467–2476 (2011).

    CAS  Google Scholar 

  93. Xie, L. X. et al. Rapamycin inhibited the function of lung CSCs via SOX2. Tumour Biol. 37, 4929–4937 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, Y. et al. Rapamycin inhibits FBXW7 loss-induced epithelial–mesenchymal transition and cancer stem cell-like characteristics in colorectal cancer cells. Biochem. Biophys. Res. Commun. 434, 352–356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jang, Y. Y. & Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yilmaz, O. H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Baar, E. L., Carbajal, K. A., Ong, I. M. & Lamming, D. W. Sex- and tissue-specific changes in mTOR signaling with age in C57BL/6J mice. Aging Cell 15, 155–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Markofski, M. M. et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp. Gerontol. 65, 1–7 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. White, Z., White, R. B., McMahon, C., Grounds, M. D. & Shavlakadze, T. High mTORC1 signaling is maintained, while protein degradation pathways are perturbed in old murine skeletal muscles in the fasted state. Int. J. Biochem. Cell Biol. 78, 10–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Joseph, G. A. et al. Partial inhibition of mTORC1 in aged rats counteracts the decline in muscle mass and reverses molecular signaling associated with sarcopenia. Mol. Cell. Biol. 39, e00141-19 (2019).

  101. Ham, D. J. et al. The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nat. Commun. 11, 4510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. An, W. L. et al. Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer’s disease. Am. J. Pathol. 163, 591–607 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Perluigi, M. et al. Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim. Biophys. Acta 1842, 1144–1153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tramutola, A. et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J. Neurochem. 133, 739–749 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Caccamo, A., Majumder, S., Richardson, A., Strong, R. & Oddo, S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and tau: effects on cognitive impairments. J. Biol. Chem. 285, 13107–13120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Houtkooper, R. H. et al. The metabolic footprint of aging in mice. Sci. Rep. 1, 134 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Leontieva, O. V., Paszkiewicz, G. M. & Blagosklonny, M. V. Fasting levels of hepatic p-S6 are increased in old mice. Cell Cycle 13, 2656–2659 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Calhoun, C. et al. Senescent cells contribute to the physiological remodeling of aged lungs. J. Gerontol. A Biol. Sci. Med. Sci. 71, 153–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Blagosklonny, M. V. Rapamycin treatment early in life reprograms aging: hyperfunction theory and clinical practice. Aging 14, 8140–8149 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, R. et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16, 564–574 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Soukas, A. A., Kane, E. A., Carr, C. E., Melo, J. A. & Ruvkun, G. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev. 23, 496–511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mizunuma, M., Neumann-Haefelin, E., Moroz, N., Li, Y. & Blackwell, T. K. mTORC2–SGK-1 acts in two environmentally responsive pathways with opposing effects on longevity. Aging Cell 13, 869–878 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chang, K. et al. TGFB–INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2. Autophagy 16, 1807–1822 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Yu, D. et al. Calorie-restriction-induced insulin sensitivity is mediated by adipose mTORC2 and not required for lifespan extension. Cell Rep. 29, 236–248 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chellappa, K. et al. Hypothalamic mTORC2 is essential for metabolic health and longevity. Aging Cell 18, e13014 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Arriola Apelo, S. I. et al. Ovariectomy uncouples lifespan from metabolic health and reveals a sex-hormone-dependent role of hepatic mTORC2 in aging. eLife 9, e56177 (2020).

  117. Lamming, D. W. et al. Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan. Aging Cell 13, 911–917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Garratt, M. et al. Male lifespan extension with 17-α estradiol is linked to a sex-specific metabolomic response modulated by gonadal hormones in mice. Aging Cell 17, e12786 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Dominick, G. et al. Regulation of mTOR activity in Snell dwarf and GH receptor gene-disrupted mice. Endocrinology 156, 565–575 (2015).

    Article  PubMed  Google Scholar 

  120. Schreiber, K. H. et al. A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat. Commun. 10, 3194 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sadtler, K. et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352, 366–370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Festuccia, W. T., Pouliot, P., Bakan, I., Sabatini, D. M. & Laplante, M. Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLoS ONE 9, e95432 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Katholnig, K. et al. Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis. JCI Insight 4, e124164 (2019).

  124. Yang, C. et al. mTORC1 and mTORC2 differentially promote natural killer cell development. eLife 7, e35619 (2018).

  125. Hallowell, R. W. et al. mTORC2 signalling regulates M2 macrophage differentiation in response to helminth infection and adaptive thermogenesis. Nat. Commun. 8, 14208 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, L. et al. Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner. Cell Rep. 14, 1206–1217 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Powell, J. D., Pollizzi, K. N., Heikamp, E. B. & Horton, M. R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30, 39–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Guertin, D. A. et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15, 148–159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fang, X. et al. LINC00998 functions as a novel tumor suppressor in acute myeloid leukemia via regulating the ZFP36 ring finger protein/mammalian target of rapamycin complex 2 axis. Bioengineered 12, 10363–10372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tian, L. et al. mTORC2 regulates ribonucleotide reductase to promote DNA replication and gemcitabine resistance in non-small cell lung cancer. Neoplasia 23, 643–652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ding, Y. et al. Vimentin loss promotes cancer proliferation through up-regulating Rictor/AKT/β-catenin signaling pathway. Exp. Cell Res. 405, 112666 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Johnson, S. C. et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342, 1524–1528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Martin-Perez, M. et al. PKC downregulation upon rapamycin treatment attenuates mitochondrial disease. Nat. Metab. 2, 1472–1481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Walters, H. E., Deneka-Hannemann, S. & Cox, L. S. Reversal of phenotypes of cellular senescence by pan-mTOR inhibition. Aging 8, 231–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chung, C. L. et al. Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. GeroScience 41, 861–869 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tabernero, J. et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J. Clin. Oncol. 26, 1603–1610 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Novartis. Full Prescribing Information Zortress https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021560s000lbl.pdf (2010).

  138. Pfizer. Full Prescribing Information Rapamune https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021083s059,021110s076lbl.pdf (2017).

  139. Trelinska, J. et al. Complications of mammalian target of rapamycin inhibitor anticancer treatment among patients with tuberous sclerosis complex are common and occasionally life-threatening. Anticancer Drugs 26, 437–442 (2015).

    CAS  Google Scholar 

  140. Krueger, D. A. et al. Long-term treatment of epilepsy with everolimus in tuberous sclerosis. Neurology 87, 2408–2415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Johnston, O., Rose, C. L., Webster, A. C. & Gill, J. S. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J. Am. Soc. Nephrol. 19, 1411–1418 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Firpi, R. J. et al. Sirolimus-induced hyperlipidaemia in liver transplant recipients is not dose-dependent. Aliment. Pharmacol. Ther. 19, 1033–1039 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Bissler, J. J. et al. Everolimus long-term use in patients with tuberous sclerosis complex: four-year update of the EXIST-2 study. PLoS ONE 12, e0180939 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Arriola Apelo, S. I. et al. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell 15, 28–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Zuber, J. et al. Sirolimus may reduce fertility in male renal transplant recipients. Am. J. Transplant. 8, 1471–1479 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Huyghe, E. et al. Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: an overview. Transpl. Int. 20, 305–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. File, T. M. Viral respiratory tract infections: increasing importance and a new pathogen. Curr. Opin. Infect. Dis. 16, 125–127 (2003).

    Article  PubMed  Google Scholar 

  148. Jain, S. et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N. Engl. J. Med. 373, 415–427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kraig, E. et al. A randomized control trial to establish the feasibility and safety of rapamycin treatment in an older human cohort: immunological, physical performance, and cognitive effects. Exp. Gerontol. 105, 53–69 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Miller, R. A. et al. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Green, C. L. et al. Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. Preprint at https://doi.org/10.1101/2022.10.06.511051 (2022).

  152. Richardson, N. E. et al. Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice. Nat. Aging 1, 73–86 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Deelen, J. et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat. Commun. 10, 3346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Roberts, M. N. et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 26, 539–546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Aylett, C. H. et al. Architecture of human mTOR complex 1. Science 351, 48–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Yang, H. et al. 4.4 Å resolution cryo-EM structure of human mTOR complex 1. Protein Cell 7, 878–887 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yang, H. et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552, 368–373 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ramlaul, K. et al. Architecture of the tuberous sclerosis protein complex. J. Mol. Biol. 433, 166743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Shen, K. et al. Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes. Nature 556, 64–69 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Anandapadamanaban, M. et al. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 366, 203–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rogala, K. B. et al. Structural basis for the docking of mTORC1 on the lysosomal surface. Science 366, 468–475 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Saxton, R. A. et al. Structural basis for leucine sensing by the sestrin2–mTORC1 pathway. Science 351, 53–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Mahoney, S. J. et al. A small molecule inhibitor of Rheb selectively targets mTORC1 signaling. Nat. Commun. 9, 548 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Panchaud, N., Peli-Gulli, M. P. & De Virgilio, C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6, ra42 (2013).

    Article  PubMed  Google Scholar 

  168. Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Saxton, R. A., Chantranupong, L., Knockenhauer, K. E., Schwartz, T. U. & Sabatini, D. M. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 536, 229–233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chantranupong, L. et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165, 153–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Haws, S. A. et al. Methyl-metabolite depletion elicits adaptive responses to support heterochromatin stability and epigenetic persistence. Mol. Cell 78, 210–223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shin, H. R. et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science 377, 1290–1298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tsun, Z. Y. et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52, 495–505 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Meng, J. & Ferguson, S. M. GATOR1-dependent recruitment of FLCN–FNIP to lysosomes coordinates Rag GTPase heterodimer nucleotide status in response to amino acids. J. Cell Biol. 217, 2765–2776 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Martinez-Carreres, L. et al. CDK4 regulates lysosomal function and mTORC1 activation to promote cancer cell survival. Cancer Res. 79, 5245–5259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jansen, R. M. et al. Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation. Sci. Adv. 8, eadd2926 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Han, J. M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Kim, S. H. et al. Mitochondrial threonyl-tRNA synthetase TARS2 is required for threonine-sensitive mTORC1 activation. Mol. Cell 81, 398–407 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Menon, S. et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Carroll, B. et al. Control of TSC2–Rheb signaling axis by arginine regulates mTORC1 activity. eLife 5, e11058 (2016).

  182. Yang, S. et al. The Rag GTPase regulates the dynamic behavior of TSC downstream of both amino acid and growth factor restriction. Dev. Cell 55, 272–288 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yoon, S. et al. Discovery of leucyladenylate sulfamates as novel leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors. J. Med. Chem. 59, 10322–10328 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Yoon, S. et al. Discovery of (S)-4-isobutyloxazolidin-2-one as a novel leucyl-tRNA synthetase (LRS)-targeted mTORC1 inhibitor. Bioorg. Med. Chem. Lett. 26, 3038–3041 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Yoon, S. et al. Discovery of simplified leucyladenylate sulfamates as novel leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors. Bioorg. Med. Chem. 25, 4145–4152 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Kim, J. H. et al. Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction. Nat. Commun. 8, 732 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Kim, E. Y. et al. Therapeutic effects of the novel leucyl-tRNA synthetase inhibitor BC-LI-0186 in non-small cell lung cancer. Ther. Adv. Med. Oncol. 11, 1758835919846798 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sullivan, D. New mTOR Player Storms into Longevity https://longevity.technology/news/new-mtor-player-storms-into-longevity/ (2022).

  189. Mazin, A. Lessons from Longevity Therapeutics 2021—Part 4 https://www.lifespan.io/news/lessons-from-longevity-therapeutics-2021-part-4/ (2021).

  190. Fan, Q. et al. A kinase inhibitor targeted to mTORC1 drives regression in glioblastoma. Cancer Cell 31, 424–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lamming, D. W. Diminished mTOR signaling: a common mode of action for endocrine longevity factors. SpringerPlus 3, 735 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Mao, K. et al. Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat. Commun. 9, 2394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Strong, R. et al. Rapamycin-mediated mouse lifespan extension: late-life dosage regimes with sex-specific effects. Aging Cell 19, e13269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhang, Y. et al. Rapamycin extends life and health in C57BL/6 mice. J. Gerontol. A Biol. Sci. Med. Sci. 69, 119–130 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Miller, R. A. et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13, 468–477 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Fok, W. C. et al. Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome. PLoS ONE 9, e83988 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Ferrara-Romeo, I. et al. The mTOR pathway is necessary for survival of mice with short telomeres. Nat. Commun. 11, 1168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Fang, Y. et al. Effects of rapamycin on growth hormone receptor knockout mice. Proc. Natl Acad. Sci. USA 115, E1495–E1503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Arriola Apelo, S. I. & Lamming, D. W. Rapamycin: an inhibiTOR of aging emerges from the soil of Easter Island. J. Gerontol. A Biol. Sci. Med. Sci. 71, 841–849 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Li, A. et al. Rapamycin treatment dose-dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell-cycle-associated CDK1/cyclin axis. J. Cell. Mol. Med. 21, 1619–1635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhang, X. et al. Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Autophagy 7, 412–425 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Bhattacharya, A. et al. Dietary restriction but not rapamycin extends disease onset and survival of the H46R/H48Q mouse model of ALS. Neurobiol. Aging 33, 1829–1832 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Hernando, E. et al. The AKT–mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat. Med. 13, 748–753 (2007).

    Article  CAS  PubMed  Google Scholar 

  204. Squarize, C. H., Castilho, R. M. & Gutkind, J. S. Chemoprevention and treatment of experimental Cowden’s disease by mTOR inhibition with rapamycin. Cancer Res. 68, 7066–7072 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Koehl, G. E. et al. Rapamycin inhibits oncogenic intestinal ion channels and neoplasia in APCMin/+ mice. Oncogene 29, 1553–1560 (2010).

    Article  CAS  PubMed  Google Scholar 

  206. Alexander, A. et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA 107, 4153–4158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ohara, T. et al. Inhibition of mTOR by temsirolimus contributes to prolonged survival of mice with pleural dissemination of non-small-cell lung cancer cells. Cancer Sci. 102, 1344–1349 (2011).

    Article  CAS  PubMed  Google Scholar 

  208. Comas, M. et al. New nanoformulation of rapamycin Rapatar extends lifespan in homozygous p53−/− mice by delaying carcinogenesis. Aging 4, 715–722 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hussein, O., Tiedemann, K., Murshed, M. & Komarova, S. V. Rapamycin inhibits osteolysis and improves survival in a model of experimental bone metastases. Cancer Lett. 314, 176–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Komarova, E. A. et al. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/− mice. Aging 4, 709–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Maude, S. L. et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 120, 3510–3518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Livi, C. B. et al. Rapamycin extends life span of Rb1+/− mice by inhibiting neuroendocrine tumors. Aging 5, 100–110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Hasty, P. et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev. Res. 7, 169–178 (2014).

    Article  CAS  Google Scholar 

  214. Morran, D. C. et al. Targeting mTOR dependency in pancreatic cancer. Gut 63, 1481–1489 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Popovich, I. G. et al. Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin. Cancer Biol. Ther. 15, 586–592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Christy, B. et al. p53 and rapamycin are additive. Oncotarget 6, 15802–15813 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Ando, T. et al. Gemcitabine and rapamycin exhibit additive effect against osteosarcoma by targeting autophagy and apoptosis. Cancers 12, 3097 (2020).

  218. Kon, N. et al. mTOR inhibition acts as an unexpected checkpoint in p53-mediated tumor suppression. Genes Dev. 35, 59–64 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Parihar, M. et al. Sex-dependent lifespan extension of ApcMin/+ FAP mice by chronic mTOR inhibition. Aging Pathobiol. Ther. 2, 187–194 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Parihar, M. et al. Rapamycin extends life span in ApcMin/+ colon cancer FAP model. Clin. Colorectal Cancer 20, e61–e70 (2021).

    Article  PubMed  Google Scholar 

  221. Tibarewal, P. et al. Long-term treatment of cancer-prone germline PTEN mutant mice with low-dose rapamycin extends lifespan and delays tumour development. J. Pathol. 258, 382–394 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Khapre, R. V. et al. BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging 6, 48–57 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Leontieva, O. V., Paszkiewicz, G. M. & Blagosklonny, M. V. Weekly administration of rapamycin improves survival and biomarkers in obese male mice on high-fat diet. Aging Cell 13, 616–622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Sataranatarajan, K. et al. Rapamycin increases mortality in db/db mice, a mouse model of type 2 diabetes. J. Gerontol. A Biol. Sci. Med. Sci. 71, 850–857 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Yuskaitis, C. J. et al. Chronic mTORC1 inhibition rescues behavioral and biochemical deficits resulting from neuronal Depdc5 loss in mice. Hum. Mol. Genet. 28, 2952–2964 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Klofas, L. K., Short, B. P., Zhou, C. & Carson, R. P. Prevention of premature death and seizures in a Depdc5 mouse epilepsy model through inhibition of mTORC1. Hum. Mol. Genet. 29, 1365–1377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Hurez, V. et al. Chronic mTOR inhibition in mice with rapamycin alters T, B, myeloid, and innate lymphoid cells and gut flora and prolongs life of immune-deficient mice. Aging Cell 14, 945–956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Feng, X. et al. Rapamycin is highly effective in murine models of immune-mediated bone marrow failure. Haematologica 102, 1691–1703 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Correia-Melo, C. et al. Rapamycin improves healthspan but not inflammaging in nfκb1−/− mice. Aging Cell 18, e12882 (2019).

    Article  PubMed  Google Scholar 

  230. Warner, L. M., Adams, L. M. & Sehgal, S. N. Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum. 37, 289–297 (1994).

    Article  CAS  PubMed  Google Scholar 

  231. Zaradzki, M. et al. Short-term rapamycin treatment increases life span and attenuates aortic aneurysm in a murine model of Marfan-syndrome. Biochem. Pharmacol. 205, 115280 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Johnson, S. C. et al. Dose-dependent effects of mTOR inhibition on weight and mitochondrial disease in mice. Front. Genet. 6, 247 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Siegmund, S. E. et al. Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome. Hum. Mol. Genet. 26, 4588–4605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Cortes, C. J., Qin, K., Cook, J., Solanki, A. & Mastrianni, J. A. Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann–Straussler–Scheinker disease. J. Neurosci. 32, 12396–12405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Ramos, F. J. et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl. Med. 4, 144ra103 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Liao, C. Y. et al. Rapamycin reverses metabolic deficits in lamin A/C-deficient mice. Cell Rep. 17, 2542–2552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Birkisdottir, M. B. et al. Unlike dietary restriction, rapamycin fails to extend lifespan and reduce transcription stress in progeroid DNA repair-deficient mice. Aging Cell 20, e13302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Zeng, L. H., Xu, L., Gutmann, D. H. & Wong, M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 63, 444–453 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Lee, N. et al. Rapamycin weekly maintenance dosing and the potential efficacy of combination sorafenib plus rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models. BMC Pharmacol. 9, 8 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Liang, M. C. et al. TSC1 loss synergizes with KRAS activation in lung cancer development in the mouse and confers rapamycin sensitivity. Oncogene 29, 1588–1597 (2010).

    Article  CAS  PubMed  Google Scholar 

  241. Woodrum, C., Nobil, A. & Dabora, S. L. Comparison of three rapamycin dosing schedules in A/J Tsc2+/− mice and improved survival with angiogenesis inhibitor or asparaginase treatment in mice with subcutaneous tuberous sclerosis related tumors. J. Transl. Med. 8, 14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Malhowski, A. J. et al. Smooth muscle protein-22-mediated deletion of Tsc1 results in cardiac hypertrophy that is mTORC1-mediated and reversed by rapamycin. Hum. Mol. Genet. 20, 1290–1305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Nechama, M., Makayes, Y., Resnick, E., Meir, K. & Volovelsky, O. Rapamycin and dexamethasone during pregnancy prevent tuberous sclerosis complex-associated cystic kidney disease. JCI Insight 5, e136857 (2020).

  244. Iwata, W. et al. Podocyte-specific deletion of tubular sclerosis complex 2 promotes focal segmental glomerulosclerosis and progressive renal failure. PLoS ONE 15, e0229397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Halloran, J. et al. Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience 223, 102–113 (2012).

    Article  CAS  PubMed  Google Scholar 

  246. Lin, A. L. et al. Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer’s disease. J. Cereb. Blood Flow Metab. 37, 217–226 (2017).

    CAS  Google Scholar 

  247. Van Skike, C. E. et al. mTOR drives cerebrovascular, synaptic, and cognitive dysfunction in normative aging. Aging Cell 19, e13057 (2020).

    PubMed  Google Scholar 

  248. Dai, D. F. et al. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13, 529–539 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Flynn, J. M. et al. Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 12, 851–862 (2013).

    Article  CAS  PubMed  Google Scholar 

  250. Zaseck, L. W., Miller, R. A. & Brooks, S. V. Rapamycin attenuates age-associated changes in tibialis anterior tendon viscoelastic properties. J. Gerontol. A Biol. Sci. Med. Sci. 71, 858–865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Liang, S. J., Zhou, J. Y. & Wang, X. Q. Signaling network centered on mTORC1 dominates mammalian intestinal stem cell ageing. Stem Cell Rev. Rep. 17, 842–849 (2021).

    Article  PubMed  Google Scholar 

  252. Dumas, S. N. & Lamming, D. W. Next generation strategies for geroprotection via mTORC1 inhibition. J. Gerontol. A Biol. Sci. Med. Sci. 75, 14–23 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Simons for suggesting additional references to include in our tables of rapamycin lifespan and survival studies, A. Salmon for sharing information about his in-progress studies and many of our colleagues for providing additional information about their published studies and current and future plans. The Lamming laboratory is supported in part by the NIH–NIA (AG056771, AG062328, AG061635 and AG076941), the NIH–NIDDK (DK125859) and startup and other funds from the University of Wisconsin—Madison School of Medicine and Public Health and the Department of Medicine to D.W.L. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

J.B.M. and D.W.L. wrote the manuscript and prepared the figures.

Corresponding author

Correspondence to Dudley W. Lamming.

Ethics declarations

Competing interests

J.B.M. is CEO and cofounder of Tornado Therapeutics, which is developing safer, more effective mTOR inhibitors to extend human healthspan, and a former CMO of resTORbio. D.W.L. has received funding from and is a scientific advisory board member of Aeovian Pharmaceuticals, which seeks to develop new, selective mTOR inhibitors for the treatment of various diseases.

Peer review

Peer review information

Nature Aging thanks Troy Merry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannick, J.B., Lamming, D.W. Targeting the biology of aging with mTOR inhibitors. Nat Aging 3, 642–660 (2023). https://doi.org/10.1038/s43587-023-00416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-023-00416-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing