Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Multilingualism protects against accelerated aging in cross-sectional and longitudinal analyses of 27 European countries

Abstract

Aging trajectories are influenced by modifiable risk factors, and prior evidence has hinted that multilingualism may have protective potential. However, reliance on suboptimal health markers, small samples, inadequate confounder control and a focus on clinical cohorts led to mixed findings and limited applicability to healthy populations. Here, we developed biobehavioral age gaps, quantifying delayed or accelerated aging in 86,149 participants across 27 European countries. National surveys provided individual-level positive (functional ability, education, cognition) and adverse (cardiometabolic conditions, female sex, sensory impairments) factors, while country-level multilingualism served as an aggregate exposure. Biobehavioral factors predicted age (R2 = 0.24, r = 0.49, root mean squared error = 8.61), with positive factors linked to delayed aging and adverse factors to accelerated aging. Multilingualism emerged as a protective factor in cross-sectional (odds ratio = 0.46) and longitudinal (relative risk = 0.70) analyses, whereas monolingualism increased risk of accelerated aging (odds ratio = 2.11; relative risk = 1.43). Effects persisted after adjusting for linguistic, physical, social and sociopolitical exposomes. These results underscore the protective role of multilingualism and its broad applicability for global health initiatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design and analytical workflow.
Fig. 2: BAG results and epidemiological associations.
Fig. 3: Validation of the biobehavioral age prediction model and derived BAGs.
Fig. 4: Epidemiological outcomes after covariate adjustments.

Similar content being viewed by others

Data availability

All databases used in this study are publicly accessible. Indicators of GDP, air quality, socioeconomic inequality (Gini index) and migration were obtained from the World Bank’s platform (https://databank.worldbank.org/). Country-level gender inequality indexes (GII) are available on the WHO’s website (https://www.who.int/data/nutrition/nlis/info/gender-inequality-index-(gii)/. Sociopolitical exposome indicators are available through the Global State of Democracy Indices (https://www.idea.int/democracytracker/dataset-resources/). Country-level percentages of foreign-speaking languages are sourced from the Eurostat database covering 2007, 2011, 2016 and 2022 waves (https://ec.europa.eu/eurostat/statistics-explained/index.php?/title=Foreign_language_skills_statistics/). Linguistic exposome indicators for the number of stable and institutional languages per European country are available from Ethnologue (https://www.ethnologue.com/). The two most spoken languages per country are sourced from the ‘Europeans and their languages’ Eurobarometer survey by the European Commission (https://languageknowledge.eu/countries-list/). The typological distance between languages was estimated using the Perplexity metric available at https://github.com/gamallo/Perplexity/.

Code availability

Analysis code (https://github.com/euroladbrainlat/Biobehavioral-age-gaps-Multilingualism/tree/main/scripts/) and preprocessed data containing individual BAG estimates (https://github.com/euroladbrainlat/Biobehavioral-age-gaps-Multilingualism/tree/main/scripts/main/data/) are freely available on GitHub.

References

  1. Livingston, G. et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 404, 572–628 (2024).

    Article  PubMed  Google Scholar 

  2. Santamaria-Garcia, H. et al. Factors associated with healthy aging in Latin American populations. Nat. Med. 29, 2248–2258 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. GBD 2021 Forecasting Collaborators Burden of disease scenarios for 204 countries and territories, 2022-2050: a forecasting analysis for the Global Burden of Disease Study 2021. Lancet 403, 2204–2256 (2024).

    Article  Google Scholar 

  4. Fang, M. et al. Lifetime risk and projected burden of dementia. Nat. Med. 31, 772–776 (2025).

    Article  CAS  PubMed  Google Scholar 

  5. Hernández, H. et al. The exposome of healthy and accelerated aging across 40 countries. Nat. Med. 31, 3089–3100 (2025).

  6. Bialystok, E. Bilingualism: pathway to cognitive reserve. Trends Cogn. Sci. 25, 355–364 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Venugopal, A. et al. Protective effect of bilingualism on aging, MCI, and dementia: a community-based study. Alzheimer’s Dement. 20, 2620–2631 (2024).

    Article  Google Scholar 

  8. Craik, F. I., Bialystok, E. & Freedman, M. Delaying the onset of Alzheimer disease: bilingualism as a form of cognitive reserve. Neurology 75, 1726–1729 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alladi, S. et al. Bilingualism delays age at onset of dementia, independent of education and immigration status. Neurology 81, 1938–1944 (2013).

    Article  PubMed  Google Scholar 

  10. Perani, D. et al. The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proc. Natl Acad. Sci. USA 114, 1690–1695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abutalebi, J. et al. Bilingualism protects anterior temporal lobe integrity in aging. Neurobiol. Aging 35, 2126–2133 (2014).

    Article  PubMed  Google Scholar 

  12. Anderson, J. A. E. et al. Effects of bilingualism on white matter integrity in older adults. NeuroImage 167, 143–150 (2018).

    Article  PubMed  Google Scholar 

  13. Voits, T. et al. Degree of multilingual engagement modulates resting state oscillatory activity across the lifespan. Neurobiol. Aging 140, 70–80 (2024).

    Article  PubMed  Google Scholar 

  14. Stevens, W. D., Khan, N., Anderson, J. A. E., Grady, C. L. & Bialystok, E. A neural mechanism of cognitive reserve: the case of bilingualism. NeuroImage 281, 120365 (2023).

    Article  PubMed  Google Scholar 

  15. Mukadam, N., Sommerlad, A. & Livingston, G. The relationship of bilingualism compared to monolingualism to the risk of cognitive decline or dementia: a systematic review and meta-analysis. J. Alzheimer’s Dis. 58, 45–54 (2017).

    Article  Google Scholar 

  16. Brini, S. et al. Bilingualism is associated with a delayed onset of dementia but not with a lower risk of developing it: a systematic review with meta-analyses. Neuropsychol. Rev. 30, 1–24 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ibanez, A. et al. Neuroecological links of the exposome and One Health. Neuron 112, 1905–1910 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fuller, R. et al. Pollution and health: a progress update. Lancet Planet Health 6, e535–e547 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sheridan, M. A. Measuring the impact of structural inequality on the structure of the brain. Proc. Natl Acad. Sci. USA 120, e2306076120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zugman, A. et al. Country-level gender inequality is associated with structural differences in the brains of women and men. Proc. Natl Acad. Sci. USA 120, e2218782120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Bavel, J. J., Gadarian, S. K., Knowles, E. & Ruggeri, K. Political polarization and health. Nat. Med. 30, 3085–3093 (2024).

    Article  PubMed  Google Scholar 

  22. Lorenz-Spreen, P., Oswald, L., Lewandowsky, S. & Hertwig, R. A systematic review of worldwide causal and correlational evidence on digital media and democracy. Nat. Hum. Behav. 7, 74–101 (2023).

    Article  PubMed  Google Scholar 

  23. Gonzalez-Gomez, R. et al. Qualitative and quantitative educational disparities and brain signatures in healthy aging and dementia across global settings. EClinicalMedicine 82, 103187 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hatzenbuehler, M. L., McLaughlin, K. A., Weissman, D. G. & Cikara, M. A research agenda for understanding how social inequality is linked to brain structure and function. Nat. Hum. Behav. 8, 20–31 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Legaz, A., Baez, S. & Ibañez, A. Unequal burdens: How structural socioeconomic inequality shapes brain health in aging and dementia. Neuroscience 569, 245–247 (2025).

    Article  CAS  PubMed  Google Scholar 

  26. Baez, S. et al. Structural inequality and temporal brain dynamics across diverse samples. Clin. Transl. Med 14, e70032 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Legaz, A. et al. Structural inequality linked to brain volume and network dynamics in aging and dementia across the Americas. Nat. Aging 5, 259–274 (2025).

    Article  PubMed  Google Scholar 

  28. Moguilner, S. et al. Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations. Nat. Med. 30, 3646–3657 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ibanez, A. et al. Healthy aging meta-analyses and scoping review of risk factors across Latin America reveal large heterogeneity and weak predictive models. Nat. aging 4, 1153–1165 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tian, Y. E. et al. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat. Med. 29, 1221–1231 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Smith, S. M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T. E. & Miller, K. L. Estimation of brain age delta from brain imaging. NeuroImage 200, 528–539 (2019).

    Article  PubMed  Google Scholar 

  32. SHARE-ERIC. Survey of Health, Ageing and Retirement in Europe (SHARE) Wave 1. Release version: 9.0.0. SHARE-ERIC https://doi.org/10.6103/SHARE.w1.900 (2024).

  33. SHARE-ERIC. Survey of Health, Ageing and Retirement in Europe (SHARE) Wave 2. Release version: 9.0.0. SHARE-ERIC https://doi.org/10.6103/SHARE.w2.900 (2024).

  34. Börsch-Supan, A. et al. Data resource profile: the Survey of Health Ageing and Retirement in Europe (SHARE). Int. J. Epidemiol. 42, 992–1001 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bergmann, M., Kneip, T., De Luca, G. & Scherpenzeel, A. Survey participation in the Survey of Health, Ageing and Retirement in Europe (SHARE), Wave 1–7. Based on Release 7.0.0. SHARE Working Paper Series 41–2019 (MEA, Max Planck Institute for Social Law and Social Policy. 2019).

  36. Chen, Y. E. A. Defining brain health: a concept analysis. Int. J. Geriatr. Psychiatry https://doi.org/10.1002/gps.5564 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. World Health Organization. World Report on Ageing and Health (Geneva, 2015).

  38. Thierry, G. & Wu, Y. J. Brain potentials reveal unconscious translation during foreign-language comprehension. Proc. Natl Acad. Sci. USA 104, 12530–12535 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Villameriel, S., Costello, B., Giezen, M. & Carreiras, M. Cross-modal and cross-language activation in bilinguals reveals lexical competition even when words or signs are unheard or unseen. Proc. Natl Acad. Sci. USA 119, e2203906119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rothman, J. Harnessing the bilingual descent down the mountain of life: charting novel paths for Cognitive and Brain Reserves research. Biling. Lang. Cogn. 28, 793–801 (2024).

    Article  Google Scholar 

  41. Li, P., Legault, J. & Litcofsky, K. A. Neuroplasticity as a function of second language learning: anatomical changes in the human brain. Cortex 58, 301–324 (2014).

    Article  PubMed  Google Scholar 

  42. Mechelli, A. et al. Neurolinguistics: structural plasticity in the bilingual brain. Nature 431, 757 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Pliatsikas, C. Understanding structural plasticity in the bilingual brain: the Dynamic Restructuring Model. Biling. Lang. Cogn. 23, 459–471 (2020).

    Article  Google Scholar 

  44. Amoruso, L. et al. Decoding bilingualism from resting-state oscillatory network organization. Ann. N. Y. Acad. Sci. 1534, 106–117 (2024).

    Article  PubMed  Google Scholar 

  45. Voits, T., Pliatsikas, C., Robson, H. & Rothman, J. Beyond Alzheimer’s disease: can bilingualism be a more generalized protective factor in neurodegeneration?. Neuropsychologia 147, 107593 (2020).

    Article  PubMed  Google Scholar 

  46. Orcutt, M. et al. Lancet migration: global collaboration to advance migration health. Lancet 395, 317–319 (2020).

    Article  PubMed  Google Scholar 

  47. Boyle, P. A. et al. The “cognitive clock”: a novel indicator of brain health. Alzheimers Dement. 17, 1923–1937 (2021).

    Article  PubMed  Google Scholar 

  48. Yu, L. et al. Predicting age at Alzheimer’s dementia onset with the cognitive clock. Alzheimers Dement. 19, 3555–3562 (2023).

    Article  PubMed  Google Scholar 

  49. DeLuca, V., Rothman, J., Bialystok, E. & Pliatsikas, C. Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proc. Natl Acad. Sci. USA 116, 7565–7574 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Titone, D. A. & Tiv, M. Rethinking multilingual experience through a Systems Framework of Bilingualism. Biling. Lang. Cogn. 26, 1–16 (2023).

    Article  Google Scholar 

  51. Baez, S. et al. Structural inequality and temporal brain dynamics across diverse samples. Clin. Transl. Med. 14, e70032 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ruiz-Adame, M., Ibanez, A., Mollayeva, T. & Trepel, D. Association between neuroticism and dementia on healthcare use: a multi-level analysis across 27 countries from The Survey of Health, Ageing and Retirement in Europe (SHARE). J. Alzheimer’s Dis. 95, 181–193 (2023).

    Article  Google Scholar 

  53. Chen, H., Cohen, P. & Chen, S. How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Commun. Stat.—Simul. Comput. 39, 860–864 (2010).

    Article  Google Scholar 

  54. Lakens, D. Sample size justification. Collabra. Psychol. 8, 33267 (2022).

    Article  Google Scholar 

  55. Eurostat. EU key indicators (Statistical Office of the European Union Luxembourg, 2025).

  56. Gong, J. et al. Sex differences in dementia risk and risk factors: Individual-participant data analysis using 21 cohorts across six continents from the COSMIC consortium. Alzheimers Dement. 19, 3365–3378 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. GBD 2019 Dementia Forecasting Collaborators Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).

    Article  Google Scholar 

  58. Friedman, J. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    Article  Google Scholar 

  59. Fittipaldi, S. et al. Heterogeneous factors influence social cognition across diverse settings in brain health and age-related diseases. Nat. Ment. Health 2, 63–75 (2024).

    Article  Google Scholar 

  60. Andrade, C. Understanding relative risk, odds ratio, and related terms: as simple as it can get. J. Clin. Psychiatry 76, e857–e861 (2015).

    Article  PubMed  Google Scholar 

  61. Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358 (2019).

    Article  PubMed  Google Scholar 

  62. Gamallo, P., Pichel, J. R. & Alegria, I. From language identification to language distance. Phys. A Stat. Mech. Appl. 484, 152–162 (2017).

    Article  Google Scholar 

  63. Paul, P., Pennell, M. L. & Lemeshow, S. Standardizing the power of the Hosmer–Lemeshow goodness of fit test in large data sets. Stat. Med. 32, 67–80 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

L.A. is supported by the Spanish Ministry of Science and Innovation under the program Ramón y Cajal (RYC2022-035514-I). H.H. is supported by Davos Alzheimer’s Collaborative. A.I. is supported by grants from the multi-partner consortium to expand dementia research in Latin America (ReDLat, supported by Fogarty International Center (FIC), National Institutes of Health (NIH), National Institutes of Aging (R01 AG057234, R01 AG075775, R01 AG21051, R01 AG083799, CARDS-NIH), Alzheimer’s Association (SG-20-725707), Rainwater Charitable Foundation – The Bluefield project to cure FTD, and Global Brain Health Institute)); ANID/FONDECYT Regular (1210195 and 1210176 and 1220995); ANID/PIA/ANILLOS ACT210096; FONDEF ID20I10152 and ANID/FONDAP 15150012. A.M.G. is supported by the NIH, National Institutes of Aging (R01 AG075775, R01 AG083799, 2P01AG019724); ANID/FONDECYT Regular (1250317 and 1250091); DICYT-USACH (032351MA); and Agencia Nacional de Promoción Científica y Tecnológica (01-PICTE-2022-05-00103). C.D.-A. is supported by ANID/FONDECYT Regular 1210622, ANID/PIA/ANILLOS ACT210096, Alzheimer’s Association (AARGD-24- 1310017), ANID/FOVI240065 and ANID/Proyecto Exploración 13240170. H.S.-G. is supported by NIH R01 (‘Social epigenetics of Alzheimer’s disease and related dementias in Latin American countries’, no. 1R01AG082056-01A1), Global Brain Health Institute and Alzheimer Association (‘Brain health in individuals with exposition to high violence in Colombia’, no. GBHI ALZ UK-23-971135”). S.B. is supported by the Global Brain Health Institute, Alzheimer’s Association, Alzheimer’s Society UK and Pilot Awards for Global Brain Health Leaders (grant no. GBHI ALZ UK- 25-1289623). Additionally, research reported in this publication was supported by the Fogarty International Center of the NIH under award number D43TW012455. J.M. and C.C.-O. are supported by postdoctoral fellowships granted by the multi-partner consortium to expand dementia research in Latin America (ReDLat), and the Atlantic Fellows for Equity in Brain Health program. The contents of this publication are solely the responsibility of the authors and do not represent the official views of these institutions. This paper uses data from SHARE Waves 1, 2, 3, 4, 5, 6, 7, 8 and 9 (DOIs: https://doi.org/10.6103/SHARE.w1.900; https://doi.org/10.6103/SHARE.w2.900; https://doi.org/10.6103/SHARE.w3.900; https://doi.org/10.6103/SHARE.w4.900; https://doi.org/10.6103/SHARE.w5.900; https://doi.org/10.6103/SHARE.w6.900; https://doi.org/10.6103/SHARE.w6.DBS.100; https://doi.org/10.6103/SHARE.w7.900; https://doi.org/10.6103/SHARE.w8.900; https://doi.org/10.6103/SHARE.w8ca.900; https://doi.org/10.6103/SHARE.w9.900; https://doi.org/10.6103/SHARE.w9ca.900; https://doi.org/10.6103/SHARE.HCAP1.100). The SHARE data collection has been funded by the European Commission, DG RTD through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857, SHARELIFE: CIT4-CT-2006-028812), FP7 (SHARE-PREP: GA N°211909, SHARE-LEAP: GA N°227822, SHARE M4: GA N°261982, DASISH: GA N°283646) and Horizon 2020 (SHARE-DEV3: GA N°676536, SHARE-COHESION: GA N°870628, SERISS: GA N°654221, SSHOC: GA N°823782, SHARE-COVID19: GA N°101015924) and by DG Employment, Social Affairs and Inclusion through VS 2015/0195, VS 2016/0135, VS 2018/0285, VS 2019/0332, VS 2020/0313, SHARE-EUCOV: GA N°101052589 and EUCOVII: GA N°101102412. Additional funding from the German Federal Ministry of Education and Research (01UW1301, 01UW1801, 01UW2202), the Max Planck Society for the Advancement of Science, the US National Institute on Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, BSR12-04, R01_AG052527-02, R01_AG056329-02, R01_AG063944, HHSN271201300071C, RAG052527A) and from various national funding sources is gratefully acknowledged (see www.share-eric.eu).

Author information

Authors and Affiliations

Authors

Contributions

Research design: A.I., H.H. and L.A.; Data collection, curation and analysis: H.H. and L.A.; BAG methods: H.H., H.S.M., S.B. and A.I.; multilingualism methods: L.A. and A.M.G.; writing—original draft: L.A., H.H., A.M.G. and A.I.; writing—reviewing and editing: all authors; project administration and funding: A.I.; accessed and verified data: H.H., L.A., S.B. and H.S.M.

Corresponding author

Correspondence to Agustin Ibanez.

Ethics declarations

Competing interests

All authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Jason Rothman, who co-reviewed with Federico Gallo; and Junhao Wen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Stratified analysis by age group.

Associations between number of spoken languages and BAGs across age cohorts (n = 86,149 participants). A) Odds ratio (OR) estimates from the cross-sectional analysis and B) relative risk (RR) estimates from the longitudinal analysis, both stratified by age. Across designs, results show that risk of accelerated aging increases with age among monolinguals. For individuals speaking one additional language, the protective effect weakens with age. In contrast, speaking two or more additional languages is linked to progressively stronger protection with advancing age.

Supplementary information

Supplementary Information

Supplementary Note 1, Tables 1–6 and References

Reporting Summary

Source data

Source Data Fig. 1

Single Excel file containing statistical source data for all figures. No source data are provided for Fig. 1, as it is a descriptive schematic of the pipeline.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoruso, L., Hernandez, H., Santamaria-Garcia, H. et al. Multilingualism protects against accelerated aging in cross-sectional and longitudinal analyses of 27 European countries. Nat Aging 5, 2340–2354 (2025). https://doi.org/10.1038/s43587-025-01000-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-025-01000-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research