Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduced cerebello-thalamo-cortical functional connectivity during traumatic memory retrieval in PTSD

Abstract

Traumatic memory retrieval is marked by vivid sensations, temporal fragmentation and a sense of reliving the past. Here we apply an unrestricted, whole-brain connectome approach to examine neutral and traumatic memory retrieval using functional magnetic resonance imaging in 90 individuals: those with post-traumatic stress disorder (PTSD, n = 46) and its dissociative subtype (PTSD + DS, n = 19) versus trauma-exposed controls (n = 25). Both PTSD and PTSD + DS exhibited hypoconnectivity in cerebrocerebellar and basal ganglia–cerebellar circuits alongside increased intracerebellar connectivity during traumatic memory retrieval only, reflecting a segregated cerebellar topology and a breakdown in long-range cortical connections. Brainstem–cerebellar hyperconnectivity was observed in PTSD + DS relative to controls during traumatic memory retrieval and in all participants with PTSD when directly comparing traumatic versus neutral memory retrieval. PTSD + DS exhibited additional hypoconnectivity between occipital regions and the thalamus and basal ganglia. These findings suggest a disruption to subcortical–cortical ‘vertical’ integration during traumatic memory retrieval, where cerebellar-based predictive processes may be markedly altered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PTSD and PTSD + DS versus trauma-exposed controls during neutral and traumatic memory retrieval.
Fig. 2: Brain-behavior latent factor analysis for all participants with PTSD.
Fig. 3: Schematic of large-scale functional connectivity alterations in PTSD and PTSD + DS during traumatic memory retrieval.

Similar content being viewed by others

Data availability

The group data (SPM files) from the ROI-to-ROI large-scale analyses reported in this article will be made available upon request and are not openly available due to ethical and privacy concerns. Please direct any such request to the corresponding author via email. We will make our best attempt to respond to any inquiries within 14 days.

Code availability

All analyses used standard SPM12, CONN (version 21a) analysis pipelines and MATLAB R2022a implementations of openly available algorithms. No custom code was used in this study.

References

  1. Weathers, F. W. et al. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): development and initial psychometric evaluation in military veterans. Psychol. Assess. 30, 383–395 (2018).

    Article  PubMed  Google Scholar 

  2. Frewen, P. A. & Lanius, R. A. Healing the Traumatized Self: Consciousness, Neuroscience, Treatment (W.W. Norton, 2015).

  3. van der Kolk, B. A. The Body Keeps the Score: Brain, Mind, and Body in the Healing of Trauma (Penguin Books, 2015).

  4. Rubin, D. C. A basic-systems approach to autobiographical memory. Curr. Dir. Psychol. Sci. 14, 79–83 (2005).

    Article  Google Scholar 

  5. Brewin, C. R., Dalgleish, T. & Joseph, S. A dual representation theory of posttraumatic stress disorder. Psychol. Rev. 103, 670–686 (1996).

    Article  PubMed  Google Scholar 

  6. Kearney, B. E. & Lanius, R. A. Why reliving is not remembering and the unique neurobiological representation of traumatic memory. Nat. Ment. Health 2, 1142–1151 (2024).

    Article  Google Scholar 

  7. Harricharan, S., McKinnon, M. C. & Lanius, R. A. How processing of sensory information from the internal and external worlds shape the perception and engagement with the world in the aftermath of trauma: implications for PTSD. Front. Neurosci. 15, 625490 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lanius, R. A. et al. Emotion modulation in PTSD: clinical and neurobiological evidence for a dissociative subtype. Am. J. Psychiatry 167, 640–647 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hopper, J. W. & van der Kolk, B. A. Retrieving, assessing, and classifying traumatic memories: a preliminary report on three case studies of a new standardized method. J. Aggress. Maltreat. Trauma 4, 33–71 (2001).

    Article  Google Scholar 

  10. Chaposhloo, M. et al. Altered resting-state functional connectivity in the anterior and posterior hippocampus in post-traumatic stress disorder: the central role of the anterior hippocampus. NeuroImage Clin. 38, 103417 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Malivoire, B. L., Girard, T. A., Patel, R. & Monson, C. M. Functional connectivity of hippocampal subregions in PTSD: relations with symptoms. BMC Psychiatry 18, 129 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Akiki, T. J., Averill, C. L. & Abdallah, C. G. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies. Curr. Psychiatry Rep. 19, 81 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lieberman, J. M. et al. Posterior cingulate cortex targeted real‐time fMRI neurofeedback recalibrates functional connectivity with the amygdala, posterior insula, and default‐mode network in PTSD. Brain Behav. 13, e2883 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bluhm, R. L. et al. Alterations in default network connectivity in posttraumatic stress disorder related to early-life trauma. J. Psychiatry Neurosci. 34, 187–194 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bryant, R. A., Felmingham, K. L., Malhi, G., Andrew, E. & Korgaonkar, M. S. The distinctive neural circuitry of complex posttraumatic stress disorder during threat processing. Psychol. Med. 51, 1121–1128 (2021).

    Article  PubMed  Google Scholar 

  16. Hinojosa, C. A. et al. Pre-treatment amygdala activation and habituation predict symptom change in post-traumatic stress disorder. Front. Behav. Neurosci. 17, 1198244 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Milad, M. R. et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry 66, 1075–1082 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rauch, S. L. et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biological psychiatry 47, 769–776 (2000).

    Article  PubMed  Google Scholar 

  19. Leskin, L. P. & White, P. M. Attentional networks reveal executive function deficits in posttraumatic stress disorder. Neuropsychology 21, 275–284 (2007).

    Article  PubMed  Google Scholar 

  20. Fani, N. et al. Attention bias toward threat is associated with exaggerated fear expression and impaired extinction in PTSD. Psychol. Med. 42, 533–543 (2012).

    Article  PubMed  Google Scholar 

  21. Kearney, B. E. et al. How the body remembers: examining the default mode and sensorimotor networks during moral injury autobiographical memory retrieval in PTSD. Neuroimage Clin. 38, 103426 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Harricharan, S. et al. Sensory overload and imbalance: resting-state vestibular connectivity in PTSD and its dissociative subtype. Neuropsychologia 106, 169–178 (2017).

    Article  PubMed  Google Scholar 

  23. Stevens, L., Bregulla, M. & Scheele, D. Out of touch? How trauma shapes the experience of social touch–neural and endocrine pathways. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2024.105595 (2024).

  24. Terpou, B. A. et al. The hijacked self: disrupted functional connectivity between the periaqueductal gray and the default mode network in posttraumatic stress disorder using dynamic causal modeling. Neuroimage Clin. 27, 102345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cavicchioli, M. et al. Psychological dissociation and temporal integration/segregation across the senses: an experimental study. Conscious Cogn. 124, 103731 (2024).

    Article  PubMed  Google Scholar 

  26. Rangaprakash, D., Dretsch, M. N., Katz, J. S., Denney, T. S. Jr & Deshpande, G. Dynamics of segregation and integration in directional brain networks: illustration in soldiers with PTSD and neurotrauma. Front. Neurosci. 13, 803 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, R. et al. Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities. Proc. Natl Acad. Sci. USA 118, e2022288118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 430–439 (2015).

    Article  PubMed  Google Scholar 

  29. Sporns, O. Networks of the Brain (MIT, 2016).

  30. Koirala, S. et al. Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-024-00869-z (2024).

  31. Noble, S., Curtiss, J., Pessoa, L. & Scheinost, D. The tip of the iceberg: a call to embrace anti-localizationism in human neuroscience research. Imaging Neurosci. 2, 1–10 (2024).

    Article  Google Scholar 

  32. Shaw, S. B. et al. Large-scale functional hyperconnectivity patterns in trauma-related dissociation: an rs-fMRI study of PTSD and its dissociative subtype. Nat. Ment. Health 1, 711–721 (2023).

    Article  Google Scholar 

  33. Deen, A. et al. The dissociative subtype of PTSD in trauma-exposed individuals: a latent class analysis and examination of clinical covariates. Eur. J. Psychotraumatol. 13, 2031591 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Steuwe, C., Lanius, R. A. & Frewen, P. A. The role of dissociation in civilian posttraumatic stress disorder: evidence for a dissociative subtype by latent class and confirmatory factor analysis. Depress. Anxiety 29, 689–700 (2012).

    Article  PubMed  Google Scholar 

  35. Lanius, R. A., Brand, B., Vermetten, E., Frewen, P. A. & Spiegel, D. The dissociative subtype of posttraumatic stress disorder: rationale, clinical and neurobiological evidence, and implications. Depress. Anxiety 29, 701–708 (2012).

    Article  PubMed  Google Scholar 

  36. Blithikioti, C. et al. The cerebellum and psychological trauma: a systematic review of neuroimaging studies. Neurobiol. Stress 17, 100429 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hayes, J. P. et al. Reduced hippocampal and amygdala activity predicts memory distortions for trauma reminders in combat-related PTSD. J. Psych. Res. 45, 660–669 (2011).

    Article  Google Scholar 

  38. Ke, J. et al. A longitudinal fMRI investigation in acute post-traumatic stress disorder (PTSD). Acta Radiologica 57, 1387–1395 (2016).

    Article  PubMed  Google Scholar 

  39. Koch, S. B. et al. Aberrant resting‐state brain activity in posttraumatic stress disorder: a meta‐analysis and systematic review. Depress. Anxiety 33, 592–605 (2016).

    Article  PubMed  Google Scholar 

  40. Nicholson, A. A. et al. Differential mechanisms of posterior cingulate cortex downregulation and symptom decreases in posttraumatic stress disorder and healthy individuals using real‐time fMRI neurofeedback. Brain Behav. 12, e2441 (2022).

    Article  PubMed  Google Scholar 

  41. Rabellino, D., Densmore, M., Théberge, J., McKinnon, M. C. & Lanius, R. A. The cerebellum after trauma: resting‐state functional connectivity of the cerebellum in posttraumatic stress disorder and its dissociative subtype. Hum. Brain Mapp. 39, 3354–3374 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, T. et al. Altered resting-state functional activity in posttraumatic stress disorder: a quantitative meta-analysis. Sci. Rep. 6, 27131 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen, H. J. et al. Altered resting-state dorsal anterior cingulate cortex functional connectivity in patients with post-traumatic stress disorder. Aust. N. Z. J. Psychiatry 53, 68–79 (2019).

    Article  PubMed  Google Scholar 

  44. Moreno-Rius, J. The cerebellum under stress. Front. Neuroendocrinol. 54, 100774 (2019).

    Article  PubMed  Google Scholar 

  45. Paulus, M. P., Feinstein, J. S. & Khalsa, S. S. An active inference approach to interoceptive psychopathology. Ann. Rev. Clin. Psychol. 15, 97–122 (2019).

    Article  Google Scholar 

  46. Shadmehr, R. Distinct neural circuits for control of movement vs. holding still. J. Neurophysiol. 117, 1431–1460 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ernst, T. M. et al. The cerebellum is involved in processing of predictions and prediction errors in a fear conditioning paradigm. eLife 8, e46831 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lange, I. et al. The anatomy of fear learning in the cerebellum: a systematic meta-analysis. Neurosci. Biobehav. Rev. 59, 83–91 (2015).

    Article  PubMed  Google Scholar 

  49. Garrison, J., Erdeniz, B. & Done, J. Prediction error in reinforcement learning: a meta-analysis of neuroimaging studies. Neurosci. Biobehav. Rev. 37, 1297–1310 (2013).

    Article  PubMed  Google Scholar 

  50. Sokolov, A. A., Miall, R. C. & Ivry, R. B. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn. Sci. 21, 313–332 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shadmehr, R. Population coding in the cerebellum: a machine learning perspective. J. Neurophysiol. 124, 2022–2051 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Uehara, S., Mawase, F. & Celnik, P. Learning similar actions by reinforcement or sensory-prediction errors rely on distinct physiological mechanisms. Cerebral Cortex 28, 3478–3490 (2018).

    Article  PubMed  Google Scholar 

  53. Frontera, J. L. et al. Bidirectional control of fear memories by cerebellar neurons projecting to the ventrolateral periaqueductal grey. Nat. Commun. 11, 5207 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B. & Diedrichsen, J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat. Neurosci. 22, 1371–1378 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Van Overwalle, F. et al. Consensus paper: cerebellum and social cognition. Cerebellum 19, 833–868 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lang, P. J. A bio‐informational theory of emotional imagery. Psychophysiology 16, 495–512 (1979).

    Article  PubMed  Google Scholar 

  57. Bradley, M. M., Sambuco, N. & Lang, P. J. Imagery, emotion, and bioinformational theory: from body to brain. Biol. Psychol. 183, 108669 (2023).

    Article  PubMed  Google Scholar 

  58. Diedrichsen, J., King, M., Hernandez-Castillo, C., Sereno, M. & Ivry, R. B. Universal transform or multiple functionality? Understanding the contribution of the human cerebellum across task domains. Neuron 102, 918–928 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kelly, R. M. & Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23, 8432–8444 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Putica, A. & Agathos, J. Reconceptualizing complex posttraumatic stress disorder: a predictive processing framework for mechanisms and intervention. Neurosci. Biobehav. Rev. 164, 105836 (2024).

    Article  PubMed  Google Scholar 

  61. Linson, A. & Friston, K. Reframing PTSD for computational psychiatry with the active inference framework. Cogn. Neuropsychiatry 24, 347–368 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Barron, H. C., Auksztulewicz, R. & Friston, K. Prediction and memory: a predictive coding account. Prog. Neurobiol. 192, 101821 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Friston, K. & Kiebel, S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. B 364, 1211–1221 (2009).

    Article  Google Scholar 

  64. Ito, M. Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9, 304–313 (2008).

    Article  PubMed  Google Scholar 

  65. D’Angelo, E. & Casali, S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front. Neural Circuits 6, 116 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998).

    Article  PubMed  Google Scholar 

  67. Brown, E. C. & Brüne, M. The role of prediction in social neuroscience. Front. Hum. Neurosci. 6, 147 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Van Overwalle, F. Social and emotional learning in the cerebellum. Nat. Rev. Neurosci. 25, 776–791 (2024).

    Article  PubMed  Google Scholar 

  69. Middleton, F. A. & Strick, P. L. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res. Rev. 31, 236–250 (2000).

    Article  PubMed  Google Scholar 

  70. Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and nonmotor function. Ann. Rev. Neurosci. 32, 413–434 (2009).

    Article  PubMed  Google Scholar 

  71. Eccles, J. C. Circuits in the cerebellar control of movement. Proc. Natl Acad. Sci. USA 58, 336–343 (1967).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Millidge, B., Tang, M., Osanlouy, M., Harper, N. S. & Bogacz, R. Predictive coding networks for temporal prediction. PLOS Comput. Biol. 20, e1011183 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Miall, R. C. in Neuroscience in the 21st Century: From Basic to Clinical (ed. Pfaff, D. W.) 1563–1582 (Springer, 2022).

  74. Gornati, S. V. et al. Differentiating cerebellar impact on thalamic nuclei. Cell Rep. 23, 2690–2704 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Palesi, F. et al. Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Struct. Funct. 220, 3369–3384 (2015).

    Article  PubMed  Google Scholar 

  76. Zhang, P. et al. The cerebellum and cognitive neural networks. Front. Hum. Neurosci. 17, 1197459 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hoshi, E., Tremblay, L., Féger, J., Carras, P. L. & Strick, P. L. The cerebellum communicates with the basal ganglia. Nat. Neurosci. 8, 1491–1493 (2005).

    Article  PubMed  Google Scholar 

  78. Bostan, A. C., Dum, R. P. & Strick, P. L. The basal ganglia communicate with the cerebellum. Proc. Natl Acad. Sci. USA 107, 8452–8456 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Schmahmann, J. D. & Pandya, D. N. Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex 44, 1037–1066 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nettekoven, C. et al. A hierarchical atlas of the human cerebellum for functional precision mapping. Nat. Commun. 15, 8376 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tovote, P. et al. Midbrain circuits for defensive behaviour. Nature 534, 206–212 (2016).

    Article  PubMed  Google Scholar 

  84. Keay, K. A. & Bandler, R. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci. Biobehav. Rev. 25, 669–678 (2001).

    Article  PubMed  Google Scholar 

  85. Maddox, S. A., Hartmann, J., Ross, R. A. & Ressler, K. J. Deconstructing the gestalt: mechanisms of fear, threat, and trauma memory encoding. Neuron 102, 60–74 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Terpou, B. A. et al. The innate alarm system and subliminal threat presentation in posttraumatic stress disorder: neuroimaging of the midbrain and cerebellum. Chronic Stress 3, 2470547018821496 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Thome, J. et al. Desynchronization of autonomic response and central autonomic network connectivity in posttraumatic stress disorder. Hum. Brain Mapp. 38, 27–40 (2017).

    Article  PubMed  Google Scholar 

  88. Stoodley, C. J. & Schmahmann, J. D. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44, 489–501 (2009).

    Article  PubMed  Google Scholar 

  89. Halko, M. A., Farzan, F., Eldaief, M. C., Schmahmann, J. D. & Pascual-Leone, A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J. Neurosci. 34, 12049–12056 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Coffman, K. A., Dum, R. P. & Strick, P. L. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc. Natl Acad. Sci. USA 108, 16068–16073 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lanius, R. A., Bluhm, R., Lanius, U. & Pain, C. A review of neuroimaging studies in PTSD: heterogeneity of response to symptom provocation. J. Psych. Res. 40, 709–729 (2006).

    Article  Google Scholar 

  92. Kearney, B. E. & Lanius, R. A. The brain-body disconnect: a somatic sensory basis for trauma-related disorders. Front. Neurosci. 16, 1015749 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Scheliga, S. et al. Neural correlates of multisensory integration in the human brain: an ALE meta-analysis. Rev. Neurosci. 34, 223–245 (2023).

    Article  PubMed  Google Scholar 

  94. Schmahmann, J. D., Guell, X., Stoodley, C. J. & Halko, M. A. The theory and neuroscience of cerebellar cognition. Ann. Rev. Neurosci. 42, 337–364 (2019).

    Article  PubMed  Google Scholar 

  95. Guell, X., Gabrieli, J. D. & Schmahmann, J. D. Embodied cognition and the cerebellum: perspectives from the dysmetria of thought and the universal cerebellar transform theories. Cortex 100, 140–148 (2018).

    Article  PubMed  Google Scholar 

  96. King, M., Shahshahani, L., Ivry, R. B. & Diedrichsen, J. A task-general connectivity model reveals variation in convergence of cortical inputs to functional regions of the cerebellum. eLife 12, e81511 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lloyd, C. S. et al. Shame on the brain: neural correlates of moral injury event recall in posttraumatic stress disorder. Depress. Anxiety 38, 596–605 (2021).

    Article  PubMed  Google Scholar 

  98. Andrews, K. et al. ‘I am afraid you will see the stain on my soul’: direct gaze neural processing in individuals with PTSD after moral injury recall. Soc. Cogn. Affect. Neurosci. 18, nsad053 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Terpou, B. A. et al. Moral wounds run deep: exaggerated midbrain functional network connectivity across the default mode network in posttraumatic stress disorder. J. Psychiatry Neurosci. 47, E56–E66 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  100. First, M. B., Spitzer, R. L., Gibbon, M. & Williams, J. B. W. Structured Clinical Interview for DSM‐IV‐TR axis I Disorders, Research Version, Patient Edition (SCID‐I/P) (Biometrics Research, New York State Psychiatric Institute, 2002).

  101. Nash, W. P. et al. Psychometric evaluation of the moral injury events scale. Mil. Med. 178, 646–652 (2013).

    Article  PubMed  Google Scholar 

  102. Bernstein, D. P. et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse Negl. 27, 169–190 (2003).

    Article  PubMed  Google Scholar 

  103. Beck, A. T., Guth, D., Steer, R. A. & Ball, R. Screening for major depression disorders in medical inpatients with the Beck Depression Inventory for Primary Care. Behav. Res. Ther. 35, 785–791 (1997).

    Article  PubMed  Google Scholar 

  104. Briere, J., Weathers, F. W. & Runtz, M. Is dissociation a multidimensional construct? Data from the Multiscale Dissociation Inventory. J. Trauma. Stress 18, 221–231 (2005).

    Article  PubMed  Google Scholar 

  105. Bremner, J. D. et al. Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am. J. Psychiatry 156, 1787–1795 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lanius, R. A. et al. Recall of emotional states in posttraumatic stress disorder: an fMRI investigation. Biol. Psychiatry 53, 204–210 (2003).

    Article  PubMed  Google Scholar 

  107. Palombo, D. J. et al. The neural correlates of memory for a life-threatening event: an fMRI study of passengers from flight AT236. Clin. Psychol. Sci. 4, 312–319 (2016).

    Article  PubMed  Google Scholar 

  108. Wolpe, J. Subjective units of distress scale. J. EMDR Pract. Res. https://doi.org/10.1037/t05183-000 (1969).

    Article  Google Scholar 

  109. Hopper, J. W., Frewen, P. A., Sack, M., Lanius, R. A. & Van der Kolk, B. A. The responses to script-driven imagery scale (RSDI): assessment of state posttraumatic symptoms for psychobiological and treatment research. J. Psychopathol. Behav. Assess. 29, 249–268 (2007).

    Article  Google Scholar 

  110. Nieto-Castanon, A., & Whitfield-Gabrieli, S. CONN functional connectivity toolbox (RRID: SCR_009550), version 21 (Hilbert Press Manual, 2021).

  111. Whitfield-Gabrieli, S., Nieto-Castanon, A. & Ghosh, S. Artifact detection tools (ART), Release version 7:11 (Massachusetts Institute of Technology, 2011).

  112. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  113. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).

    Article  PubMed  Google Scholar 

  114. Edlow, B. L. et al. Multimodal MRI reveals brainstem connections that sustain wakefulness in human consciousness. Sci. Transl. Med. 16, eadj4303 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nieto-Castanon, A. Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN (Hilbert Press, 2020).

  116. Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    Article  PubMed  Google Scholar 

  118. Zhang, J. et al. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain 139, 2307–2321 (2016).

    Article  PubMed  Google Scholar 

  119. Rolls, E. T., Cheng, W. & Feng, J. Brain dynamics: synchronous peaks, functional connectivity, and its temporal variability. Hum. Brain Mapp. 42, 2790–2801 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Calhoun, V. D., Adali, T., Pearlson, G. D. & Pekar, J. J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14, 140–151 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Smith, S. M. et al. A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1565–1567 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lin, H. Y. et al. Brain–behavior patterns define a dimensional biotype in medication-naïve adults with attention-deficit hyperactivity disorder. Psychol. Med. 48, 2399–2408 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the individuals who participated, as well as Homewood Health in Guelph, Ontario, Canada, who facilitated referrals. We are also grateful to our dedicated research and clinical team, without whom we could not have done this work. This work was supported by infrastructure funds from the Canada Foundation for Innovation Grant (grant no. 31724 to J.T.) and Lawson Research Institute, as well as operating funds from Innovation for Defense Excellence and Security (IDEaS) (grant no. CovCA-0642 to R.A.L.), the Canadian Institute for Military and Veteran Health Research, Green Shield Canada, the Centre of Excellence on PTSD, Canada, and the Canadian Institutes of Health Research (grant no. 148784 to M.C.M. and R.A.L.). B.E.K. is supported by the Jonathan and Joshua Memorial Scholarship and Homewood Research Institute in Guelph, Ontario. R.A.L. is supported by the Harris-Woodman Chair in Psyche and Soma at Western University, and M.C.M. is supported by the Homewood Chair in Mental Health and Trauma at McMaster University.

Author information

Authors and Affiliations

Authors

Contributions

B.E.K.: conceptualization (analysis), methodology, data analysis and writing. M.D.: data curation and methodology. J.T.: data curation, methodology, funding acquisition and editing. R.J.: funding acquisition and conceptualization (experimental). M.C.M: conceptualization (experimental) and funding acquisition. S.B.S: conceptualization (analysis), data collection and curation, methodology, writing, editing and supervision. R.A.L.: conceptualization (experimental and analysis), data collection and curation, methodology, editing, funding acquisition and supervision.

Corresponding author

Correspondence to Ruth A. Lanius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Nicola Sambuco, Vedat Şar and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 ROI-to-ROI Connectome Ring for PTSD (n = 46) > Control (n = 25) during Traumatic Memory Retrieval.

Two-sided t-tests were conducted to compare ROI-to-ROI functional connectivity strength between groups. The t-statistic bar is presented in the bottom left corner, with warm colors denoting increased and cool colors denoting decreased functional connectivity strength. The connection threshold was set to p < 0.05 uncorrected, and the cluster threshold was set to p < 0.05 cluster-level pFDR corrected (MVPA omnibus test). AAN= Ascending arousal network; AC= Anterior cingulate; AG= Angular gyrus; aITG= Inferior temporal gyrus, anterior division; aPaHC= Parahippocampal gyrus, anterior division; aSMG= Supramarginal gyrus, anterior division; aTFusC= Temporal fusiform cortex, anterior division; Cereb=Cerebellum; CO= Central operculum; FOrb= Frontal orbital cortex; FP= Frontal pole; HG= Heschl’s gyrus; IFGtri= Inferior frontal gyrus, pars triangularis; IFGoper= Inferior frontal gyrus, pars opercularis; iLOC= Inferior lateral occipital cortex; LC= Locus coeruleus; LDTg= Laterodorsal tegmental nucleus; LG= Lingual gyrus; medFC= Frontal medial cortex; mesRF= Mesencephalic reticular formation; MidFG= Middle frontal gyrus; OFusG= Occipital fusiform gyrus; OP= Occipital pole; PBC= Parabrachial complex; PaCiG= Paracingulate gyrus; PAG= Periaqueductal gray; PC= Posterior cingulate; pITG= Inferior frontal gyrus, posterior division; pMTG= Middle Temporal Gyrus, posterior division; PO= Parietal operculum; PostCG= Postcentral gyrus; pSMG= Supramarginal gyrus, posterior division; PreCG= Precentral gyrus; PT= Planum temporale; pTFusC= Temporal fusiform cortex, posterior division; ROI= Region of Interest; SMA= Supplementary motor area; sLOC= Lateral occipital cortex, superior division; SFG= Superior frontal gyrus; SPL= Superior parietal lobule; TOFusC= Temporal occipital fusiform cortex; toITG= Inferior temporal gyrus, temporooccipital part; toMTG= Middle Temporal Gyrus, temporooccipital part; TP= Temporal pole; Ver=Vermis; VTA= Ventral tegmental area.

Extended Data Fig. 2 ROI-to-ROI Connectome Ring for PTSD + DS (n = 19) > Control (n = 25) during Traumatic Memory Retrieval.

Two-sided t-tests were conducted to compare ROI-to-ROI functional connectivity strength between groups. The t-statistic bar is presented in the bottom left corner, with warm colors denoting increased and cool colors denoting decreased functional connectivity strength. The connection threshold was set to p < 0.05 uncorrected, and the cluster threshold was set to p < 0.05 cluster-level pFDR corrected (MVPA omnibus test). AAN= Ascending arousal network; AC= Anterior cingulate; AG= Angular gyrus; aITG= Inferior temporal gyrus, anterior division; aPaHC= Parahippocampal gyrus, anterior division; aSMG= Supramarginal gyrus, anterior division; aTFusC= Temporal fusiform cortex, anterior division; Cereb=Cerebellum; Cuneal= Cuneal cortex; FP= Frontal pole; ICC= Intracalcarine cortex; IFGtri= Inferior frontal gyrus, pars triangularis; iLOC= Lateral occipital cortex, inferior division; LC= Locus coeruleus; LG= Lingual gyrus; MedRaphe= Median raphe; mesRF= Mesencephalic reticular formation; OFusG= Occipital fusiform gyrus; OP= Occipital pole; PaCiG= Paracingulate gyrus; PAG= Periaqueductal gray; pITG= Inferior temporal gyrus, posterior division; pMTG= Middle Temporal Gyrus, posterior division; PO= Parietal operculum; pPaHC= Parahippocampal gyrus, posterior division; PontRF= Pontine reticular formation; PPN= Pedunculopontine nucleus; PreCG= Precentral gyrus; PostCG= Postcentral gyrus; pSTG= Superior temporal gyrus, posterior division; pTFusC= Temporal fusiform cortex, posterior division; ROI= Region of Interest; SCC= Supracalcarine cortex; sLOC= Lateral occipital cortex, superior division; TOFusC= Temporal occipital fusiform cortex; toITG= inferior temporal gyrus, temporooccipital part; toMTG= Middle Temporal Gyrus, temporooccipital part; Ver=Vermis; VTA= Ventral tegmental area.

Extended Data Fig. 3 Traumatic Memory Retrieval > Neutral Memory Retrieval in all PTSD individuals (PTSD + PTSD + DS; n = 65) vs Controls (n = 25).

Corresponding to Supplementary Table 2b. Two-sided t-tests were conducted to compare ROI-to-ROI functional connectivity strength between groups. Blue denotes decreased and red denotes increased functional connectivity strength; colours are non-thresholded and thus are for visualization purposes. The connection threshold was set to p < 0.05 uncorrected, and the cluster threshold was set to p < 0.05 cluster-level pFDR corrected (MVPA omnibus test). ROI= Region of Interest.

Extended Data Fig. 4 ROI-to-ROI Connectome Ring for Traumatic Memory Retrieval > Neutral Memory Retrieval in all PTSD individuals (PTSD + PTSD + DS; n = 65) vs Controls (n = 25).

Corresponding to Supplementary Table 2b. Two-sided t-tests were conducted to compare ROI-to-ROI functional connectivity strength between groups. No significant differences emerged for this contrast for trauma-exposed controls (n = 25). The t-statistic bar is presented in the bottom left corner, with warm colors denoting increased and cool colors denoting decreased functional connectivity strength. The connection threshold was set to p < 0.05 uncorrected, and the cluster threshold was set to p < 0.05 cluster-level pFDR corrected (MVPA omnibus test). AAN= Ascending arousal network; AC= Anterior cingulate; AG= Angular gyrus; aITG= Inferior temporal gyrus, anterior division; aMTG= Middle temporal gyrus, anterior division; aPaHC= Parahippocampal gyrus, anterior division; aSMG= Supramarginal gyrus, anterior division; aSTG= Superior temporal gyrus, anterior division; aTFusC= Temporal fusiform cortex, anterior division; Cereb=Cerebellum; CO= Central operculum; FO= Frontal operculum; FP= Frontal pole; HG= Heschl’s gyrus; IC= Insular cortex; IFGtri= Inferior frontal gyrus, pars triangularis; IFGoper= Inferior frontal gyrus, pars opercularis; LC= Locus coeruleus; LDTg= Laterodorsal tegmental nucleus; medRaphe= Median Raphe; mesRF= Mesencephalic reticular formation; MidFG= Middle frontal gyrus; PBC= Parabrachial complex; PaCiG= Paracingulate gyrus; PAG= Periaqueductal gray; PontRF= Pontine reticular formation; PC= Posterior cingulate; pITG= Inferior frontal gyrus, posterior division; pMTG= Middle Temporal Gyrus, posterior division; PO= Parietal operculum; PostCG= Postcentral gyrus; PP= Planum Polare; PPN= Pedunculopontine nucleus; ROI= Region of Interest; pSMG= Supramarginal gyrus, posterior division;; PreCG= Precentral gyrus; pSTG= Superior temporal gyrus, posterior division; PreCG= Precentral gyrus; PT= Planum temporale; pTFusC= Temporal fusiform cortex, posterior division; SMA= Supplementary motor area; sLOC= Lateral occipital cortex, superior division; SFG= Superior frontal gyrus; SPL= Superior parietal lobule; TOFusC= Temporal occipital fusiform cortex; toITG= Inferior temporal gyrus, temporooccipital part; toMTG= Middle Temporal Gyrus, temporooccipital part; TP= Temporal pole; Ver=Vermis.

Extended Data Fig. 5 Traumatic Memory Retrieval > Neutral Memory Retrieval in PTSD alone (n = 46) vs Controls (n = 25).

Corresponding to Supplementary Table 2c. Two-sided t-tests were conducted to compare ROI-to-ROI functional connectivity strength between groups. No significant differences emerged for this contrast for trauma-exposed controls (n = 25) or PTSD + DS (n = 19). Blue denotes decreased and red denotes increased functional connectivity strength; colours are non-thresholded and thus are for visualization purposes. The connection threshold was set to p < 0.05 uncorrected, and the cluster threshold was set to p < 0.05 cluster-level pFDR corrected (MVPA omnibus test). ROI= Region of Interest.

Extended Data Fig. 6 ROI-to-ROI Connectome Ring for Traumatic Memory Retrieval > Neutral Memory Retrieval in PTSD alone (n = 46) vs Controls (n = 25).

Corresponding to Supplementary Table 2c. Two-sided t-tests were conducted to compare ROI-to-ROI functional connectivity strength between groups. No significant differences emerged for this contrast for trauma-exposed controls (n = 25) or PTSD + DS (n = 19). The t-statistic bar is presented in the bottom left corner, with warm colors denoting increased and cool colors denoting decreased functional connectivity strength. The connection threshold was set to p < 0.05 uncorrected, and the cluster threshold was set to p < 0.05 cluster-level pFDR corrected (MVPA omnibus test). AAN= Ascending arousal network; AC= Anterior cingulate; AG= Angular gyrus; aSMG= Supramarginal gyrus, anterior division; Cereb=Cerebellum; FP= Frontal pole; IFGtri= Inferior frontal gyrus, pars triangularis; LC= Locus coeruleus; MedRaphe= Median raphe; midFG= Middle frontal gyrus; PaCiG= Paracingulate gyrus; PAG= Periaqueductal gray; PBC= Parabrachial complex; pPaHC= Parahippocampal gyrus, posterior division; PPN= Pedunculopontine nucleus; pSMG= Supramarginal gyrus, posterior division; ROI= Region of Interest; sLOC= Lateral occipital cortex, superior division; SPL= Superior parietal lobule; toITG= inferior temporal gyrus, temporooccipital part; toMTG= Middle Temporal Gyrus, temporooccipital part; Ver=Vermis.

Extended Data Fig. 7 fMRI paradigm.

Eight-minute resting-state scans were conducted before and after the experimental conditions. For the experimental conditions, participants were instructed to recall their neutral and traumatic memories when presented visually and aurally with their predetermined, personalized script. Scripts were presented one sentence at a time, for a total of eight sentences per memory. After sentence presentation (five seconds), participants spent 25 seconds retrieving that part of their memory in as vivid of detail as possible. Each sentence and its memory retrieval were followed by presentation of a virtual avatar with direct or averted gaze followed by a fixation cross for the purposes of separate analyses. Figure is adapted from previous work21 and was created using BioRender.com.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kearney, B.E., Densmore, M., Théberge, J. et al. Reduced cerebello-thalamo-cortical functional connectivity during traumatic memory retrieval in PTSD. Nat. Mental Health 3, 1057–1069 (2025). https://doi.org/10.1038/s44220-025-00476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-025-00476-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing