Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 238 results
Advanced filters: Author: Catherine Sanchez Clear advanced filters
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Oat is an important food crop, but the genetic diversity within the gene pool remains unclear. Here, the authors report the analyses of worldwide diversity and population structure of hexaploid oat, and identify signatures of structural rearrangements within the germplasm collection.

    • Wubishet A. Bekele
    • Raz Avni
    • Nicholas A. Tinker
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Meta-analysis of genome-wide association studies on Alzheimer’s disease and related dementias identifies new loci and enables generation of a new genetic risk score associated with the risk of future Alzheimer’s disease and dementia.

    • Céline Bellenguez
    • Fahri Küçükali
    • Jean-Charles Lambert
    ResearchOpen Access
    Nature Genetics
    Volume: 54, P: 412-436
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Here the authors apply machine learning approaches to Alzheimer’s genetics, confirm known associations and suggest novel risk loci. These methods demonstrate predictive power comparable to traditional approaches, while also offering potential new insights beyond standard genetic analyses.

    • Matthew Bracher-Smith
    • Federico Melograna
    • Valentina Escott-Price
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • Antimicrobial resistance genes that have been mobilized between bacterial species represent a subset of the naturally occurring resistome. Here, the authors compare the abundance, diversity and geographical patterns of acquired resistance genes with latent resistance genes in global sewage metagenomes.

    • Hannah-Marie Martiny
    • Patrick Munk
    • Frank M. Aarestrup
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Solid organ transplant recipients are at increased risk of infectious disease and have unique molecular pathophysiology. Here the authors use host-microbe profiling to assess SARS-CoV-2 infection and immunity in solid organ transplant recipients, showing enhanced viral abundance, impaired clearance, and increased expression of innate immunity genes.

    • Harry Pickering
    • Joanna Schaenman
    • Charles R. Langelier
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • Jayavelu, Samaha et al., apply machine learning models on hospital admission data, including antibody titers and viral load, to identify patients at high risk for Long COVID. Low antibody levels, high viral loads, chronic diseases, and female sex are key predictors, supporting early, targeted interventions.

    • Naresh Doni Jayavelu
    • Hady Samaha
    • Matthew C. Altman
    ResearchOpen Access
    Communications Medicine
    Volume: 6, P: 1-10
  • A pangenome of oat, assembled from 33 wild and domesticated oat lines, sheds light on the evolution and genetic diversity of this cereal crop and will aid genomics-assisted breeding to improve productivity and sustainability.

    • Raz Avni
    • Nadia Kamal
    • Martin Mascher
    ResearchOpen Access
    Nature
    Volume: 649, P: 131-139
  • Analysis of data from multiple instruments reveals a giant exoplanet in orbit around the 0.2-solar-mass star TOI-6894. The existence of this exoplanetary system challenges assumptions about planet formation and it is an excellent target for atmospheric characterization.

    • Edward M. Bryant
    • Andrés Jordán
    • Sebastián Zúñiga-Fernández
    ResearchOpen Access
    Nature Astronomy
    Volume: 9, P: 1031-1044
  • Known genetic loci account for only a fraction of the genetic contribution to Alzheimer’s disease. Here, the authors have performed a large genome-wide meta-analysis comprising 409,435 individuals to discover 6 new loci and demonstrate the efficacy of an Alzheimer’s disease polygenic risk score.

    • Itziar de Rojas
    • Sonia Moreno-Grau
    • Agustín Ruiz
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-16
  • Over half the world’s rivers dry periodically, yet little is known about the biological communities in dry riverbeds. This study examines biodiversity across 84 non-perennial rivers in 19 countries using DNA metabarcoding. It finds that nutrient availability, climate and biotic interactions influence the biodiversity of these dry environments.

    • Arnaud Foulquier
    • Thibault Datry
    • Annamaria Zoppini
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Post-acute sequelae of SARS-CoV-2 (PASC) is still not well understood. Here the authors provide patient reported outcomes from 590 hospitalized COVID-19 patients and show association of PASC with higher respiratory SARS-CoV-2 load and circulating antibody titers, and in some an elevation in circulating fibroblast growth factor 21.

    • Al Ozonoff
    • Naresh Doni Jayavelu
    • Nadine Rouphael
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-17
  • COVID-19 can be associated with neurological complications. Here the authors show that markers of brain injury, but not immune markers, are elevated in the blood of patients with COVID-19 both early and months after SARS-CoV-2 infection, particularly in those with brain dysfunction or neurological diagnoses.

    • Benedict D. Michael
    • Cordelia Dunai
    • David K. Menon
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • The role of IgG glycosylation in the immune response has been studied, but less is known about IgM glycosylation. Here the authors characterize glycosylation of SARS-CoV-2 spike specific IgM and show that it correlates with COVID-19 severity and affects complement deposition.

    • Benjamin S. Haslund-Gourley
    • Kyra Woloszczuk
    • Mary Ann Comunale
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-19
  • During the 2015–2016 outbreak, Zika virus infection was linked to birth defects. Here, the authors show that epidemic strains cause less severe disease in mouse embryos than pre-epidemic strains and conclude that less severe disease leads to higher fetal survival rates but results in noticeable birth defects.

    • Maïlis Darmuzey
    • Franck Touret
    • Suzanne J. F. Kaptein
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15