Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 3044 results
Advanced filters: Author: G Bell Clear advanced filters
  • An 11-qubit atom processor comprising two precision-placed nuclear spin registers of phosphorus in silicon is shown to achieve state-of-the-art Bell-state fidelities of up to 99.5%.

    • Hermann Edlbauer
    • Junliang Wang
    • Michelle Y. Simmons
    ResearchOpen Access
    Nature
    Volume: 648, P: 569-575
  • Entangled particles some distance apart can be used to show the strikingly nonlocal nature of quantum mechanics. Here the authors generate spatially separated pairs of helium atoms by colliding Bose-Einstein condensates and show that they are entangled by observing nonlocal correlations.

    • D. K. Shin
    • B. M. Henson
    • A. G. Truscott
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-7
  • This study demonstrates the experimental realization of a complete protocol for quantum key distribution using entangled trapped strontium ions with device-independent quantum security guarantees.

    • D. P. Nadlinger
    • P. Drmota
    • J.-D. Bancal
    Research
    Nature
    Volume: 607, P: 682-686
    • G. MAYNARD
    Comments & Opinion
    Nature
    Volume: 117, P: 130
  • Erwin Schrödinger introduced in 1935 the concept of ‘steering’, which generalizes the famed Einstein–Podolsky–Rosen paradox. Steering sits in between quantum entanglement and non-locality — that is, entanglement is necessary for steering, but steering can be achieved, as has now been demonstrated experimentally, with states that cannot violate a Bell inequality (and therefore non-locality).

    • D. J. Saunders
    • S. J. Jones
    • G. J. Pryde
    Research
    Nature Physics
    Volume: 6, P: 845-849
  • A deterministic violation of the Bell inequality is reported between two superconducting circuits, providing a necessary test for establishing strong enough quantum entanglement to achieve secure quantum communications.

    • Y. P. Zhong
    • H.-S. Chang
    • A. N. Cleland
    Research
    Nature Physics
    Volume: 15, P: 741-744
  • There are many quantum systems that act as high-quality quantum harmonic oscillators, and they can be used to store quantum information using the Gottesman–Kitaev–Preskill code. Entangling gates have now been demonstrated between two of these qubits.

    • V. G. Matsos
    • C. H. Valahu
    • T. R. Tan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1664-1669
  • A four-qubit processor of three phosphorus nuclear spins and an electron spin in silicon enables the implementation of a three-qubit Grover’s search algorithm with 95% fidelity. The implementation is based on an advanced multi-qubit gate with single-qubit gate fidelities above 99.9% and two-qubit gate fidelities above 99%.

    • I. Thorvaldson
    • D. Poulos
    • M. Y. Simmons
    ResearchOpen Access
    Nature Nanotechnology
    Volume: 20, P: 472-477
  • Developing reliable resource characterization while guaranteeing resource efficiency is essential in practical quantum information processing. In this work, the authors show that the data obtained from entanglement distillation protocols can be further processed to efficiently and robustly characterize the entangled resources.

    • Joshua Carlo A. Casapao
    • Ananda G. Maity
    • David Elkouss
    ResearchOpen Access
    Communications Physics
    Volume: 8, P: 1-12
  • Practical implementations of quantum communication need to securely deliver information over long distances without line-of-sight. Towards this goal, Cuevas et al.use an actively stabilized interferometer to close the geometry loophole for a Bell inequality violation over 1 km of optical fibre.

    • A. Cuevas
    • G. Carvacho
    • G.B. Xavier
    ResearchOpen Access
    Nature Communications
    Volume: 4, P: 1-6
  • Recent advancements have enabled quantum control and measurement of mechanical resonators. Here the authors demonstrate quantum entanglement between two mechanical resonators on separate substrates by sharing one and two quanta of energy, followed by quantum measurement of these entangled states.

    • Ming-Han Chou
    • Hong Qiao
    • Andrew N. Cleland
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-7
  • Entangled local states can be made capable of violating Bell inequalities via nonlocality activation. Typical theoretical approaches require processing many copies of the original state and performing joint measurements on the ensemble. Here, instead, the authors experimentally demonstrate how to do so using a single copy of the state, broadcasting it to two spatially separated parties within a three-node network.

    • Luis Villegas-Aguilar
    • Emanuele Polino
    • Geoff J. Pryde
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • While Bell inequalities have been violated several times—mostly in photonic systems—their violations within particle physics experiments are less explored. Here, the BESIII Collaboration showcases Bell-violating nonlocal correlations between entangled hyperon pairs.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Quantum mechanics allows to generate nearly ideal random strings from initially weak random sources, important for security of data systems, but this remains elusive in practice. Here the authors propose a realistic, error-tolerant and secure protocol for randomness amplification of arbitrary bits.

    • Fernando G. S. L. Brandão
    • Ravishankar Ramanathan
    • Hanna Wojewódka
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-6
  • While most quantum optical techniques reveal either the wave or particle nature of light, weak-field homodyne detection combines wave- and particle-like descriptions. Here, Donati et al.employ this hybrid detection scheme to study the coherence between photon number states across two-mode entangled states.

    • Gaia Donati
    • Tim J. Bartley
    • Ian A. Walmsley
    Research
    Nature Communications
    Volume: 5, P: 1-6
  • Quantum steering is a form of quantum non-locality that can be verified for arbitrarily low detection efficiencies and high losses at the price of requiring complete trust in one of the parties. Here, Kocsis et al. present measurement-device-independent steering protocols that remove this need for trust.

    • Sacha Kocsis
    • Michael J. W. Hall
    • Geoff J. Pryde
    Research
    Nature Communications
    Volume: 6, P: 1-6
  • In this study, authors employ fragment-based lead discovery to identify WRN inhibitors. The fragment hits reveal an additional allosteric pocket and uncover a previously uncharacterized structural conformation of the WRN helicase domain with unique orientations of the ATPase domains

    • Rachel L. Palte
    • Mihir Mandal
    • Daniel F. Wyss
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-17
  • Untrustworthy sources or detectors mean that quantum entanglement cannot always be ensured, but quantum steering inequalities can verify its presence. Using a highly efficient system, Smithet al. are able to close the detection loophole and clearly demonstrate steering between two parties.

    • Devin H. Smith
    • Geoff Gillett
    • Andrew G. White
    ResearchOpen Access
    Nature Communications
    Volume: 3, P: 1-6
  • Researchers demonstrate a reconfigurable integrated quantum photonic circuit. The device comprises a two-qubit entangling gate, several Hadamard-like gates and eight variable phase shifters. The set-up is used to generate entangled states, violate a Bell-type inequality with a continuum of partially entangled states and demonstrate the generation of arbitrary one-qubit mixed states.

    • P. J. Shadbolt
    • M. R. Verde
    • J. L. O'Brien
    Research
    Nature Photonics
    Volume: 6, P: 45-49
  • Wastewater-based surveillance tends to focus on specific pathogens. Here, the authors mapped the wastewater virome from 62 cities worldwide to identify over 2,500 viruses, revealing city-specific virome fingerprints and showing that wastewater metagenomics enables early detection of emerging viruses.

    • Nathalie Worp
    • David F. Nieuwenhuijse
    • Miranda de Graaf
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Baird et al. present the phase 2 PIONEER trial findings on the antitumor activity of combining aromatase inhibitor letrozole with megestrol in postmenopausal women with operable estrogen-receptor-positive human epidermal-growth-factor-receptor-2-negative breast cancer.

    • Rebecca A. Burrell
    • Sanjeev Kumar
    • Richard D. Baird
    ResearchOpen Access
    Nature Cancer
    P: 1-13
  • For a scenario of two separated but entangled observers, inequalities are derived from three fundamental assumptions. An experiment shows that these inequalities can be violated if quantum evolution is controllable on the scale of an observer.

    • Kok-Wei Bong
    • Aníbal Utreras-Alarcón
    • Howard M. Wiseman
    Research
    Nature Physics
    Volume: 16, P: 1199-1205
  • Chemically induced protein degradation is a powerful alternative to classical inhibition, but some proteins have deeply masked binding pockets that make the development of degrader molecules difficult. Here, the authors discover an alternate site on nuclear receptors that can be targeted by degraders.

    • Andrew D. Huber
    • Wenwei Lin
    • Taosheng Chen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Piezoelectric coupling of a single superconducting qubit to two phononic crystal nanoresonators results in an integrated device that is able to control and read out the quantum state of the two mechanical resonators.

    • E. Alex Wollack
    • Agnetta Y. Cleland
    • Amir H. Safavi-Naeini
    Research
    Nature
    Volume: 604, P: 463-467
  • Designing efficient and scalable specialized neuromorphic circuits to integrate raw nervous stimuli and respond identically to biological neurons remains a challenge. Here, the authors propose an analog programming strategy to emulate biological neurons in silico.

    • Kamal Abu-Hassan
    • Joseph D. Taylor
    • Alain Nogaret
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-13
  • Entanglement of two nanophotonic quantum network nodes is demonstrated through 40  km spools of low-loss fibre and a 35-km long fibre loop deployed in the Boston area urban environment.

    • C. M. Knaut
    • A. Suleymanzade
    • M. D. Lukin
    ResearchOpen Access
    Nature
    Volume: 629, P: 573-578
  • High-fidelity deterministic quantum state transfer and multi-qubit entanglement are demonstrated in a quantum network comprising two superconducting quantum nodes one metre apart, with each node including three interconnected qubits.

    • Youpeng Zhong
    • Hung-Shen Chang
    • Andrew N. Cleland
    Research
    Nature
    Volume: 590, P: 571-575
  • The approach to stabilizing a quantum state by coupling to engineered reservoirs is limited by a trade-off between state fidelity and stabilization rate. Here the authors implement a protocol based on parametric system-bath coupling to achieve fast and high-fidelity Bell state stabilization in a qutrit-qubit system.

    • T. Brown
    • E. Doucet
    • L. Ranzani
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-7
  • A proof-of-principle study reports a complete photonic quantum computer architecture that can, once appropriate component performance is achieved, deliver a universal and fault-tolerant quantum computer.

    • H. Aghaee Rad
    • T. Ainsworth
    • Y. Zhang
    ResearchOpen Access
    Nature
    Volume: 638, P: 912-919
  • Tunable interactions in quantum many-body systems have practical applications in quantum technologies. The effective spin-dependent long-range interaction known as Rydberg dressing is now exploited to entangle a pair of ultracold neutral atoms.

    • Y.-Y. Jau
    • A. M. Hankin
    • G. W. Biedermann
    Research
    Nature Physics
    Volume: 12, P: 71-74
  • Present day quantum technologies enable computations with tens and soon hundreds of qubits. A major outstanding challenge is to measure and benchmark the complete quantum state, a task that grows exponentially with the system size. Generative models based on restricted Boltzmann machines and recurrent neural networks can be employed to solve this quantum tomography problem in a scalable manner.

    • Juan Carrasquilla
    • Giacomo Torlai
    • Leandro Aolita
    Research
    Nature Machine Intelligence
    Volume: 1, P: 155-161
  • The BIG Bell Test, which used an online video game with 100,000 participants worldwide to provide random bits to 13 quantum physics experiments, contradicts the Einstein–Podolsky–Rosen worldview of local realism.

    • C. Abellán
    • A. Acín
    • J. Zhong
    Research
    Nature
    Volume: 557, P: 212-216