Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 177 results
Advanced filters: Author: Julia Hui Clear advanced filters
  • The longevity of leaves determines the overall duration of photosynthesis for plants. This study suggests that climate change drives leaf longevity convergence toward intermediate ranges, which, by altering leaf traits and enhancing photosynthetic capacity, strengthens ecosystem stability and is closely linked to vegetation diversity.

    • Meimei Xue
    • Xueqin Yang
    • Chaoyang Wu
    ResearchOpen Access
    Nature Communications
    P: 1-13
  • Adalatherium hui, a newly discovered gondwanatherian mammal from Madagascar dated to near the end of the Cretaceous period, shows features consistent with a long evolutionary trajectory of isolation in an insular environment.

    • David W. Krause
    • Simone Hoffmann
    • Lydia J. Rahantarisoa
    Research
    Nature
    Volume: 581, P: 421-427
  • The systemic discovery of metal–small-molecule complexes from biological samples is a difficult challenge. Now, a method based on liquid chromatography and native electrospray ionization mass spectrometry has been developed. The approach uses post-column pH adjustment and metal infusion combined with ion identity molecular networking, and a rule-based informatics workflow, to interrogate small-molecule–metal binding.

    • Allegra T. Aron
    • Daniel Petras
    • Pieter C. Dorrestein
    Research
    Nature Chemistry
    Volume: 14, P: 100-109
  • A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants.

    • Loïc Yengo
    • Sailaja Vedantam
    • Joel N. Hirschhorn
    ResearchOpen Access
    Nature
    Volume: 610, P: 704-712
  • Cell type labelling in single-cell datasets remains a major bottleneck. Here, the authors present AnnDictionary, an open-source toolkit that enables atlas-scale analysis and provides the first benchmark of LLMs for de novo cell type annotation from marker genes, showing high accuracy at low cost.

    • George Crowley
    • Robert C. Jones
    • Stephen R. Quake
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • This Perspective highlights the insights into the biology of BRCA1/2 afforded by mouse models and patient-derived tumor xenografts and emphasizes their value in addressing unresolved questions and preclinical evaluation of treatment strategies.

    • Julia-Star Darnold
    • Jos Jonkers
    Reviews
    Nature Genetics
    P: 1-11
  • Alterations in DNA methylation patterns are known as predictors of cancer diagnosis. Here, the authors develop a method to analyze both symmetric- and hemi-methylated regions in plasma cell free DNA and show its utility in detecting both liver and brain cancer.

    • Xu Hua
    • Hui Zhou
    • Zhiguo Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • Using data from a single time point, passenger-approximated clonal expansion rate (PACER) estimates the fitness of common driver mutations that lead to clonal haematopoiesis and identifies TCL1A activation as a mediator of clonal expansion.

    • Joshua S. Weinstock
    • Jayakrishnan Gopakumar
    • Siddhartha Jaiswal
    Research
    Nature
    Volume: 616, P: 755-763
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Previous work shows that a small population of quiescent SOX2+ medulloblastoma (MB) stem cells can drive tumour growth in early tumorigenesis and relapse. Here, the authors identify OLIG2 as a transcriptional mediator of the transition from quiescent to rapidly proliferating progenitor states and therapeutically target this axis in preclinical models of MB.

    • Kinjal Desai
    • Siyi Wanggou
    • Peter B. Dirks
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • A genome-wide association meta-analysis study of blood lipid levels in roughly 1.6 million individuals demonstrates the gain of power attained when diverse ancestries are included to improve fine-mapping and polygenic score generation, with gains in locus discovery related to sample size.

    • Sarah E. Graham
    • Shoa L. Clarke
    • Cristen J. Willer
    Research
    Nature
    Volume: 600, P: 675-679
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Douglas Easton, Per Hall and colleagues report meta-analyses of genome-wide association studies for breast cancer, including 10,052 cases and 12,575 controls, followed by genotyping using the iCOGS array in an additional 52,675 cases and 49,436 controls from studies within the Breast Cancer Association Consortium (BCAC). They identify 41 loci newly associated with susceptibility to breast cancer.

    • Kyriaki Michailidou
    • Per Hall
    • Douglas F Easton
    Research
    Nature Genetics
    Volume: 45, P: 353-361
  • Stig Bojesen, Georgia Chenevix-Trench, Alison Dunning and colleagues report common variants at the TERT-CLPTM1L locus associated with mean telomere length measured in whole blood. They also identify associations at this locus to breast or ovarian cancer susceptibility and report functional studies in breast and ovarian cancer tissue and cell lines.

    • Stig E Bojesen
    • Karen A Pooley
    • Alison M Dunning
    Research
    Nature Genetics
    Volume: 45, P: 371-384
  • Profiling the resistance landscape to PRC2 inhibitors in EZH2-mutant lymphoma with CRISPR-suppressor scanning reveals drug addiction mutations and a repressive methylation ceiling. Surpassing the ceiling with SETD2 inhibition halts lymphoma growth.

    • Hui Si Kwok
    • Allyson M. Freedy
    • Brian B. Liau
    Research
    Nature Chemical Biology
    Volume: 19, P: 1105-1115
  • Building on a nucleosome-depletion strategy, DEFND-seq utilizes a droplet microfluidic platform to enable high-throughput co-profiling of DNA and RNA in single cells.

    • Timothy R. Olsen
    • Pranay Talla
    • Peter A. Sims
    Research
    Nature Methods
    Volume: 22, P: 477-487
  • Schief and colleagues show that germline-targeting epitope scaffolds can elicit responses from rare broadly neutralizing antibody precursor B cells with predefined binding specificities and genetic features.

    • Torben Schiffner
    • Ivy Phung
    • William R. Schief
    ResearchOpen Access
    Nature Immunology
    Volume: 25, P: 1073-1082