Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 105 results
Advanced filters: Author: Justin H. Sanders Clear advanced filters
  • An initial draft of the human pangenome is presented and made publicly available by the Human Pangenome Reference Consortium; the draft contains 94 de novo haplotype assemblies from 47 ancestrally diverse individuals.

    • Wen-Wei Liao
    • Mobin Asri
    • Benedict Paten
    ResearchOpen Access
    Nature
    Volume: 617, P: 312-324
  • For pain signaling to be useful, sensory receptors must rapidly detect noxious stimuli and efficiently turn off once the threat has passed. Here, the authors uncover a critical role for the universal calcium sensor calmodulin in properly turning off the TRPA1 pain receptor.

    • Justin H. Sanders
    • Camila Garcia
    • Candice E. Paulsen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Authors report MagNet, a plasma extracellular vesicle (EV) enrichment strategy using magnetic beads. Proteomic interrogation of this plasma EV fraction enables the detection of proteins that are beyond the dynamic range of mass spectrometry of unfractionated plasma.

    • Christine C. Wu
    • Kristine A. Tsantilas
    • Michael J. MacCoss
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Azoles are important synthetic targets due to their diverse applications in areas ranging from human health to food security. Now it has been shown that the hydroazolation of alkenylthianthrenium salts provides a modular platform to access diverse, densely functionalized N-alkyl azole compounds with high N-regioselectivity.

    • Céline Dorval
    • Adrian D. Matthews
    • Zachary K. Wickens
    Research
    Nature Chemistry
    Volume: 17, P: 1576-1585
  • Generating high-energy triplet excitons from singlet fission without excess energy loss is a critical goal for potential applications. Now it is shown that molecular chromophores that are connected covalently can harbour multiple long-lived and high-energy triplets—created from one photon—only if more than two chromophoric units are present and they have sufficient flexibility to isolate the excitations upon torsional motion.

    • Nadezhda V. Korovina
    • Christopher H. Chang
    • Justin C. Johnson
    Research
    Nature Chemistry
    Volume: 12, P: 391-398
  • Comparisons within the human pangenome establish that homologous regions on short arms of heterologous human acrocentric chromosomes actively recombine, leading to the high rate of Robertsonian translocation breakpoints in these regions.

    • Andrea Guarracino
    • Silvia Buonaiuto
    • Erik Garrison
    ResearchOpen Access
    Nature
    Volume: 617, P: 335-343
  • The response to infectious and inflammatory challenges differs among people but the reasons for this are poorly understood. Here the authors explore the impact of variables such as age, sex, and the capacity for controlling inflammation and maintaining immunocompetence, linking this capacity to favourable health outcomes and lifespan.

    • Sunil K. Ahuja
    • Muthu Saravanan Manoharan
    • Weijing He
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-31
  • Gut bacteria are prevalent across insects including ants, but their precise roles are often unclear. Here, Hu et al. show that microbes aid ants by recycling nitrogen into bio-available amino acids. This function is conserved across the turtle ants, suggesting an ancient nutritional mutualism.

    • Yi Hu
    • Jon G. Sanders
    • Jacob A. Russell
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-14
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Emerging SARS-CoV-2 variants of concern were detected early and multiple cases of virus spread not captured by clinical genomic surveillance were identified using high-resolution wastewater and clinical sequencing.

    • Smruthi Karthikeyan
    • Joshua I. Levy
    • Rob Knight
    ResearchOpen Access
    Nature
    Volume: 609, P: 101-108
  • The CIP2A–TOPBP1 complex tethers fragmented chromosomes from micronuclei for asymmetric mitotic inheritance, explaining distinct patterns of chromosome rearrangements in cancers and genomic disorders.

    • Yu-Fen Lin
    • Qing Hu
    • Peter Ly
    ResearchOpen Access
    Nature
    Volume: 618, P: 1041-1048
  • Immunotherapy often fails as a single option treatment in cancer. Here, the authors show that targeting of DNA methyltransferases, such as DNMT1, can potentiate anti-tumor immunity and response to checkpoint inhibition by increasing MHC gene expression and the recruitment of CD8+ T cells.

    • Na Luo
    • Mellissa J. Nixon
    • Justin M. Balko
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-11
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The goal of the 1000 Genomes Project is to provide in-depth information on variation in human genome sequences. In the pilot phase reported here, different strategies for genome-wide sequencing, using high-throughput sequencing platforms, were developed and compared. The resulting data set includes more than 95% of the currently accessible variants found in any individual, and can be used to inform association and functional studies.

    • Richard M. Durbin
    • David Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 467, P: 1061-1073
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Plant community responses to climate change tend to be lagged in forests, but could be faster in grasslands. Here, the authors integrate long-term experimental data with >1 million occurrence records for >300 species, finding grassland community shifts towards species associated with warmer and drier conditions at a pace that aligns with that of climate change.

    • Kai Zhu
    • Yiluan Song
    • Laura R. Prugh
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 8, P: 2252-2264
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Immunotherapy is used to treat melanoma, however patient responses vary widely highlighting the need for factors that can predict therapeutic success. Here, the authors show that MHC-II molecules expressed by tumour cells are positively correlated with a good response to therapy and overall patient survival.

    • Douglas B. Johnson
    • Monica V. Estrada
    • Justin M. Balko
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-10
  • A study comparing the pattern of single-nucleotide variation between unique and duplicated regions of the human genome shows that mutation rate and interlocus gene conversion are elevated in duplicated regions.

    • Mitchell R. Vollger
    • Philip C. Dishuck
    • Evan E. Eichler
    ResearchOpen Access
    Nature
    Volume: 617, P: 325-334
  • Autism genes converge in midfetal cortical co-expression networks, and chromatin regulators such as CHD8 are increasingly associated with autism spectrum disorder (ASD). Here the authors map CHD8 targets in developing brain, and find that CHD8 directly regulates other ASD risk genes during human neurodevelopment.

    • Justin Cotney
    • Rebecca A. Muhle
    • James P. Noonan
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-11
  • Era+ breast cancer patients often develop resistance to endocrine therapy. Here, the authors show that FGFR1 amplification is a resistance mechanism to CDK4/6 inhibitor and endocrine therapy and that combined treatment with FGFR, CDK4/6, and anti-estrogens is a potential therapeutic strategy in Era+ breast cancer tumors.

    • Luigi Formisano
    • Yao Lu
    • Carlos L. Arteaga
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-14
  • Meta-analysis of genome-wide association studies on Alzheimer’s disease and related dementias identifies new loci and enables generation of a new genetic risk score associated with the risk of future Alzheimer’s disease and dementia.

    • Céline Bellenguez
    • Fahri Küçükali
    • Jean-Charles Lambert
    ResearchOpen Access
    Nature Genetics
    Volume: 54, P: 412-436