Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 121 results
Advanced filters: Author: Mary Scott Soo Clear advanced filters
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • A meta-analysis of genome-wide association studies of type 2 diabetes (T2D) identifies more than 600 T2D-associated loci; integrating physiological trait and single-cell chromatin accessibility data at these loci sheds light on heterogeneity within the T2D phenotype.

    • Ken Suzuki
    • Konstantinos Hatzikotoulas
    • Eleftheria Zeggini
    ResearchOpen Access
    Nature
    Volume: 627, P: 347-357
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Parity induces an accumulation of CD8+ T cells, including cells with a tissue-resident-memory-like phenotype within human normal breast tissue, offering long-term protection against triple-negative breast cancer.

    • Balaji Virassamy
    • Franco Caramia
    • Sherene Loi
    ResearchOpen Access
    Nature
    Volume: 649, P: 449-459
  • Alison Dunning, Stacey Edwards and colleagues analyze 3,872 common variants across the ESR1 locus in 118,816 women. They find five independent variants within regulatory regions that associate with different breast cancer–related phenotypes and regulate the expression of ESR1, RMND1 and CCDC170.

    • Alison M Dunning
    • Kyriaki Michailidou
    • Stacey L Edwards
    Research
    Nature Genetics
    Volume: 48, P: 374-386
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • This study uncovered genetic associations with environmental sensitivity in psychiatric and neurodevelopmental traits in an international collaboration using data from more than 21,000 monozygotic twins—the largest genetic study of monozygotic twin differences to date.

    • Elham Assary
    • Jonathan R. I. Coleman
    • Robert Keers
    ResearchOpen Access
    Nature Human Behaviour
    Volume: 9, P: 1683-1696
  • Andrew Morris, Mark McCarthy, Michael Boehnke and colleagues report a meta-analysis of genome-wide association studies for type 2 diabetes, including 26,488 cases and 83,964 controls from populations of European, east Asian, south Asian and Mexican and Mexican American ancestry. They identify seven loci newly associated with type 2 diabetes and examine the genetic architecture of disease across populations.

    • Anubha Mahajan
    • Min Jin Go
    • Andrew P Morris
    Research
    Nature Genetics
    Volume: 46, P: 234-244
  • Sequencing data from two large-scale studies show that most of the genetic variation influencing the risk of type 2 diabetes involves common alleles and is found in regions previously identified by genome-wide association studies, clarifying the genetic architecture of this disease.

    • Christian Fuchsberger
    • Jason Flannick
    • Mark I. McCarthy
    Research
    Nature
    Volume: 536, P: 41-47
  • Systematic comparison of genome-wide association results for disease risk and disease-specific mortality for nine common diseases across seven biobanks finds limited overlap between genetic effects on disease susceptibility and survival.

    • Zhiyu Yang
    • Fanny-Dhelia Pajuste
    • Andrea Ganna
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 2418-2426
  • Whole-genome sequencing analysis of individuals with primary immunodeficiency identifies new candidate disease-associated genes and shows how the interplay between genetic variants can explain the variable penetrance and complexity of the disease.

    • James E. D. Thaventhiran
    • Hana Lango Allen
    • Kenneth G. C. Smith
    Research
    Nature
    Volume: 583, P: 90-95
  • Oestrogen negative breast cancer is associated with a poor prognosis. In this study, the authors perform a meta-analysis of 11 breast cancer genome-wide association studies and identify four new loci associated with oestrogen negative breast cancer risk. These findings may aid in stratifying patients in the clinic.

    • Fergus J. Couch
    • Karoline B. Kuchenbaecker
    • Antonis C. Antoniou
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-13
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Roger Milne and colleagues conduct a genome-wide association study for estrogen receptor (ER)-negative breast cancer combined with BRCA1 mutation carriers in a large cohort. They identify ten new risk variants and find high genetic correlation between breast cancer risk for BRCA1 mutation carriers and risk of ER-negative breast cancer in the general population.

    • Roger L Milne
    • Karoline B Kuchenbaecker
    • Jacques Simard
    Research
    Nature Genetics
    Volume: 49, P: 1767-1778
  • John Chambers, Jaspal Kooner, Pim van der Harst, Shyong Tai, Paul Elliott, Jiang He, Norihiro Kato and colleagues performed a genome-wide association study of blood pressure phenotypes in individuals of European, East Asian and South Asian ancestry. They find trait-associated SNPs at 12 loci, some of which are associated with methylation at nearby CpG sites.

    • Norihiro Kato
    • Marie Loh
    • John C Chambers
    Research
    Nature Genetics
    Volume: 47, P: 1282-1293
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Association analysis identifies 65 new breast cancer risk loci, predicts target genes for known risk loci and demonstrates a strong overlap with somatic driver genes in breast tumours.

    • Kyriaki Michailidou
    • Sara Lindström
    • Douglas F. Easton
    Research
    Nature
    Volume: 551, P: 92-94
  • Developmental disorders (DDs) are more prevalent in males, thought to be due to X-linked genetic variation. Here, the authors investigate the burden of X-linked coding variants in 11,044 DD patients, showing that this contributes to ~6% of both male and female cases and therefore does not solely explain male bias in DDs.

    • Hilary C. Martin
    • Eugene J. Gardner
    • Matthew E. Hurles
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-13