Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 51–100 of 1241 results
Advanced filters: Author: Mi Lin Clear advanced filters
  • This study discovers human SERF2 as a key partner in stress granule formation by binding specific RNA G-quadruplexes. SERF2 and these RNAs provide a detailed structural model of protein-RNA interactions driving liquid-liquid phase separation in condensates.

    • Bikash R. Sahoo
    • Xiexiong Deng
    • James C. A. Bardwell
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-22
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Thermal lepton pairs are ideal probes for the temperature of quark-gluon plasma. Here, the STAR Collaboration uses thermal electron-positron pair production to measure quark-gluon plasma average temperature at different stages of the evolution.

    • B. E. Aboona
    • J. Adam
    • M. Zyzak
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • The goals, resources and design of the NHLBI Trans-Omics for Precision Medicine (TOPMed) programme are described, and analyses of rare variants detected in the first 53,831 samples provide insights into mutational processes and recent human evolutionary history.

    • Daniel Taliun
    • Daniel N. Harris
    • Gonçalo R. Abecasis
    ResearchOpen Access
    Nature
    Volume: 590, P: 290-299
  • Extensive characterization of the stem and progenitor cell hierarchies of myelodysplastic syndromes reveals compensatory survival mechanisms underpinning the failure of hypomethylating agents, and uncovers biomarkers that predict second-line clinical response to venetoclax-based therapy.

    • Irene Ganan-Gomez
    • Hui Yang
    • Simona Colla
    ResearchOpen Access
    Nature Medicine
    Volume: 28, P: 557-567
  • In studies using mouse models of psoriasis, a spectrum of innate lymphoid cell types is reconfigured and converges via multiple trajectories on a type 3-like state, demonstrating the range and flexibility of innate lymphoid cell responses in the skin.

    • Piotr Bielecki
    • Samantha J. Riesenfeld
    • Richard A. Flavell
    Research
    Nature
    Volume: 592, P: 128-132
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Myelodysplastic syndrome (MDS) is characterized by altered hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) regulation and reduction of miR-143 and miR-145 in some subtypes. Here the authors show that miR-143/145 loss leads to HSC depletion, HPC expansion and malignancy through Dab2 -mediated TGFβ pathway activation.

    • Jeffrey Lam
    • Marion van den Bosch
    • Aly Karsan
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-14
  • A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.

    • Ji Chen
    • Cassandra N. Spracklen
    • Cornelia van Duijn
    Research
    Nature Genetics
    Volume: 53, P: 840-860
  • The conventional focus on pore size distribution overlooks the role of surface charge homogeneity in ion separation by polymeric membranes. This study proposes a surface charge engineering strategy for fabricating highly ion-selective membranes.

    • Dan Lu
    • Mi Huang
    • Rong Wang
    Research
    Nature Water
    Volume: 3, P: 978-991
  • Analysis of 97,691 high-coverage human blood DNA-derived whole-genome sequences enabled simultaneous identification of germline and somatic mutations that predispose individuals to clonal expansion of haematopoietic stem cells, indicating that both inherited and acquired mutations are linked to age-related cancers and coronary heart disease.

    • Alexander G. Bick
    • Joshua S. Weinstock
    • Pradeep Natarajan
    Research
    Nature
    Volume: 586, P: 763-768
  • The quark structure of the f0(980) hadron is still unknown after 50 years of its discovery. Here, the CMS Collaboration reports a measurement of the elliptic flow of the f0(980) state in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV, providing strong evidence that the state is an ordinary meson.

    • A. Hayrapetyan
    • A. Tumasyan
    • A. Zhokin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Alveolar macrophages are known to derive from embryonic precursors although the regulation of this process is poorly understood. Here the authors propose a key role for histone deacetylase 3 as an epigenetic regulator of lung alveolar macrophage development.

    • Yi Yao
    • Queping Liu
    • Qing-Sheng Mi
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Although the common genetic variants contributing to blood lipid levels have been studied, the contribution of rare variants is less understood. Here, the authors perform a rare coding and noncoding variant association study of blood lipid levels using whole genome sequencing data.

    • Margaret Sunitha Selvaraj
    • Xihao Li
    • Pradeep Natarajan
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-18
  • When atoms first appeared in the Universe, molecules were needed to help coalesce them into stars. The trihydrogen cation H3+ is among the prime candidates for that process, and now two independent studies provide detailed insight into the ultrafast dynamics of the formation of this important ion from two hydrogen molecules.

    • Marcos Dantus
    News & Views
    Nature Chemistry
    Volume: 15, P: 1202-1203
  • A study of human and mouse models of pancreatic cancer finds that inhibiting the lipid kinase PIKfyve interferes with the cancer’s lipid homeostasis, making it a potential target for drug development.

    • Caleb Cheng
    • Jing Hu
    • Arul M. Chinnaiyan
    ResearchOpen Access
    Nature
    Volume: 642, P: 776-784
  • COVID-19 has exposed the fragility of supply chains, particularly for goods that are essential or may suddenly become essential, such as repurposed pharmaceuticals. Here the authors develop a methodology to provide routes to pharmaceutical targets that allow low-supply starting materials or intermediates to be avoided, with representative pathways validated experimentally.

    • Yingfu Lin
    • Zirong Zhang
    • Tim Cernak
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-8
  • Transformers show much promise for applications in computational biology, but they rely on sequences, and a challenge is to incorporate 3D structural information. TopoFormer, proposed by Dong Chen et al., combines transformers with a mathematical multiscale topology technique to model 3D protein–ligand complexes, substantially enhancing performance in a range of prediction tasks of interest to drug discovery.

    • Dong Chen
    • Jian Liu
    • Guo-Wei Wei
    Research
    Nature Machine Intelligence
    Volume: 6, P: 799-810