Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 229 results
Advanced filters: Author: N. Vázquez Clear advanced filters
  • This study demonstrates the capability of deep learning protein design models in generating functionally validated β-strand pairing interfaces, expanding the structural diversity of de novo binding proteins and accessible target surfaces.

    • Isaac Sappington
    • Martin Toul
    • David Baker
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-15
  • Studying many-body quantum chaos on current quantum hardware is hindered by noise and limited scalability. Now it is shown that a superconducting processor, combined with error mitigation, can accurately simulate dual-unitary circuit dynamics.

    • Laurin E. Fischer
    • Matea Leahy
    • Sergey N. Filippov
    Research
    Nature Physics
    P: 1-6
  • Skill transfer depends on how tasks are structured, who is trained, and how they experience stress. This study demonstrates that individual differences in emotion-cognition traits and physiological responses shape divergent transfer trajectories.

    • Kyle J. LaFollette
    • David J. Frank
    • Brooke N. Macnamara
    ResearchOpen Access
    Communications Psychology
    P: 1-16
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Macrolide antibiotics halt protein synthesis in a sequence-dependent manner. Here, authors reveal a comprehensive molecular mechanism by which macrolides induce ribosome stalling selectively at Arg/Lys-X-Arg/Lys motifs in growing polypeptide chains.

    • Egor A. Syroegin
    • Elena V. Aleksandrova
    • Yury S. Polikanov
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • The use of gaseous sulfuryl fluoride in sulfur(VI) fluoride exchange reactions is a challenge. Now, a flow set-up for the on-demand generation and onward reaction of sulfuryl fluoride, from sulfuryl chloride, is reported. The process produces fluorosulfate and sulfamoyl fluoride analogues of small molecules, peptides and proteins.

    • Miguel Bernús
    • Daniele Mazzarella
    • Timothy Noël
    Research
    Nature Synthesis
    Volume: 3, P: 185-191
  • A single-cell sequencing study using more than 30,000 tumour genomes from human ovarian cancers shows that whole-genome doubling is an ongoing mutational process that drives tumour evolution and disrupts immunity.

    • Andrew McPherson
    • Ignacio Vázquez-García
    • Sohrab P. Shah
    ResearchOpen Access
    Nature
    Volume: 644, P: 1078-1087
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Using viral barcode tracing to detect interactions between glioblastoma cells and non-malignant astrocytes in patient samples, investigators discovered a pathway that reduces tumour-specific immunity and identified potential therapeutic targets.

    • Brian M. Andersen
    • Camilo Faust Akl
    • Francisco J. Quintana
    Research
    Nature
    Volume: 644, P: 1097-1106
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The LHCb experiment at CERN has observed significant asymmetries between the decay rates of the beauty baryon and its CP-conjugated antibaryon, thus demonstrating CP violation in baryon decays.

    • R. Aaij
    • A. S. W. Abdelmotteleb
    • G. Zunica
    ResearchOpen Access
    Nature
    Volume: 643, P: 1223-1228
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The paenilamicins are hybrid nonribosomal peptide–polyketide compounds that inhibit protein synthesis. Here the authors reveal that paenilamicins bind to a unique site on the ribosome, where they interfere with the translocation of mRNA and tRNAs during elongation.

    • Timm O. Koller
    • Max J. Berger
    • Daniel N. Wilson
    ResearchOpen Access
    Nature Chemical Biology
    Volume: 20, P: 1691-1700
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Multi-modal analysis of genomically unstable ovarian tumours characterizes the contribution of anatomical sites and mutational processes to evolutionary phenotypic divergence and immune resistance mechanisms.

    • Ignacio Vázquez-García
    • Florian Uhlitz
    • Sohrab P. Shah
    ResearchOpen Access
    Nature
    Volume: 612, P: 778-786
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Cell fate commitment is understood in terms of bistable regulatory circuits with hysteresis, but inherent stochasticity in gene expression is incompatible with hysteresis. Here, the authors quantify how, under slow dynamics, the dependency of the non-stationary solutions on the initial state of the cells can lead to transient hysteresis.

    • M. Pájaro
    • I. Otero-Muras
    • A. A. Alonso
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-7
  • Romero-Becerra et al. report that stress kinases p38γ and p38δ are activated in ventricles of old mice and in arrhythmogenic conditions, and they demonstrate that p38γ/δ -driven phosphorylation of RyR2 and SAP97 is a trigger for ventricular fibrillation.

    • Rafael Romero-Becerra
    • Francisco M. Cruz
    • Guadalupe Sabio
    Research
    Nature Cardiovascular Research
    Volume: 2, P: 1204-1220
  • Human brain structure changes throughout the lifespan. Brouwer et al. identified genetic variants that affect rates of brain growth and atrophy. The genes are linked to early brain development and neurodegeneration and suggest involvement of metabolic processes.

    • Rachel M. Brouwer
    • Marieke Klein
    • Hilleke E. Hulshoff Pol
    Research
    Nature Neuroscience
    Volume: 25, P: 421-432
  • Bacteria adjust the expression of some of their metabolic enzymes through metabolite-sensing ribosome nascent chain complexes. Here the authors present a cryo-EM structure of an E. coli ribosome stalled during translation of the TnaC leader peptide and propose a model for L-Trp dependent ribosome stalling where L-Trp competes with release factor 2 for binding to the TnaC-ribosome complex.

    • Anne-Xander van der Stel
    • Emily R. Gordon
    • C. Axel Innis
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-11
  • A case–control study investigating the causes of recent cases of acute hepatitis of unknown aetiology in 32 children identifies an association between adeno-associated virus infection and host genetics in disease susceptibility.

    • Antonia Ho
    • Richard Orton
    • Emma C. Thomson
    Research
    Nature
    Volume: 617, P: 555-563
  • The implications of delaying carbon dioxide removal (CDR) are poorly understood. Here the authors highlight the potential extra costs and reduced removal potential of delayed CDR action, with a special focus on direct air capture and bioenergy with carbon capture and storage (DACCS and BECCS).

    • Ángel Galán-Martín
    • Daniel Vázquez
    • Gonzalo Guillén-Gosálbez
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-12
  • Single-cell whole-genome sequencing shows that 'foreground' cell-to-cell structural variation and alterations in copy number are associated with genomic diversity and evolution in triple-negative breast and high-grade serous ovarian cancers.

    • Tyler Funnell
    • Ciara H. O’Flanagan
    • Samuel Aparicio
    ResearchOpen Access
    Nature
    Volume: 612, P: 106-115