Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 119 results
Advanced filters: Author: Raphael Huang Clear advanced filters
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Integrating computational analyses of T cell exhaustion and mitochondrial fitness atlases with in vivo CRISPR screens has identified KLHL6 as a dual-negative regulator of both exhaustion differentiation and mitochondrial dysfunction, highlighting its potential as a target to enhance anti-tumour immunity.

    • Hongcheng Cheng
    • Yapeng Su
    • Guideng Li
    ResearchOpen Access
    Nature
    P: 1-11
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Federated learning (FL) algorithms have emerged as a promising solution to train models for healthcare imaging across institutions while preserving privacy. Here, the authors describe the Federated Tumor Segmentation (FeTS) challenge for the decentralised benchmarking of FL algorithms and evaluation of Healthcare AI algorithm generalizability in real-world cancer imaging datasets.

    • Maximilian Zenk
    • Ujjwal Baid
    • Spyridon Bakas
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The dysregulation of the inositol-requiring enzyme 1 alpha (IRE1α) has been associated with multiple human diseases, so IRE1α-targeting small molecules present great therapeutic potential. Here, the authors report a series of substituted indoles as IRE1α inhibitors of good potency and selectivity, and show that the inhibitor IA107 allosterically inhibits IRE1α RNase activity via binding to the IRE1α kinase domain but without inhibiting the IRE1α dimerization.

    • Yang Liu
    • Amrutha K. Avathan Veettil
    • Peng Wu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • DECODE uses deep learning for localizing single emitters in high-density two-dimensional and three-dimensional single-molecule localization microscopy data. DECODE outperforms available methods and enables fast live-cell SMLM of dynamic processes.

    • Artur Speiser
    • Lucas-Raphael Müller
    • Srinivas C. Turaga
    Research
    Nature Methods
    Volume: 18, P: 1082-1090
  • The function and position of organelles are pivotal for tumor cell dissemination. Here the authors use melanoma patient samples and animal models to show that peripheral localization of lysosomes promotes metastasis by favoring lysosome exocytosis and cell invasion.

    • Katerina Jerabkova-Roda
    • Marina Peralta
    • Jacky G. Goetz
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • MCM8-9 and HROB function together in DNA damage response. Here, the authors describe the mechanism of DNA unwinding by MCM8-9 and its activation by HROB. HROB makes direct contacts with both MCM8 and MCM9 and promotes DNA unwinding downstream of MCM8-9 loading and hexameric ring formation on DNA.

    • Ananya Acharya
    • Hélène Bret
    • Petr Cejka
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-18
  • Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here, the authors present the largest FL study to-date to generate an automatic tumor boundary detector for glioblastoma.

    • Sarthak Pati
    • Ujjwal Baid
    • Spyridon Bakas
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-17
  • Rational protein design to achieve a given protein backbone conformation is needed to engineer specific functions. Here Anand et al. describe a machine learning method using a learned neural network potential for fixed-backbone protein design.

    • Namrata Anand
    • Raphael Eguchi
    • Po-Ssu Huang
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-11
  • The authors present a general inverse-design framework for large-area 3D meta-optics that show engineered focusing. Such meta-optics, in combination with a laser-illuminated micro-LCD, open a path towards a future virtual reality platform.

    • Zhaoyi Li
    • Raphaël Pestourie
    • Federico Capasso
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-11
  • Genetic circuits that control transgene expression in response to pre-defined transcriptional cues would enable the development of smart therapeutics. Here the authors engineer programmable RNA sensors, DART VADARs, in which ADARs autocatalytically convert target hybridization into a translational output, thus amplifying editing by endogenous ADAR via positive feedback and conferring high dynamic range and a small genetic footprint.

    • Raphaël V. Gayet
    • Katherine Ilia
    • James J. Collins
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-10
  • Dysregulated phosphorylation is well-known in cancers, but it has largely been studied in isolation from mutations. Here the authors introduce HotPho, a tool that can discover spatial interactions between phosphosites and mutations, which are associated with activating mutation and genetic dependencies in cancer.

    • Kuan-lin Huang
    • Adam D. Scott
    • Li Ding
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-13
  • For many neurodevelopmental disorder (NDD) risk genes, the significance for mutational burden is unestablished. Here, the authors sequence 125 candidate NDD genes in over 16,000 NDD cases; case-control mutational burden analysis identifies 48 genes with a significant burden of severe ultra-rare mutations.

    • Tianyun Wang
    • Kendra Hoekzema
    • Evan E. Eichler
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Strong coupling of molecular vibrations to an optical cavity may catalyze thermally activated reactions, showcasing the potential of polariton chemistry. Here, the authors provide a theoretical framework explaining the chemical kinetics deriving from transit through polaritonic and dark states.

    • Jorge A. Campos-Gonzalez-Angulo
    • Raphael F. Ribeiro
    • Joel Yuen-Zhou
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-8
  • Single-cell metabolomics can offer deep insights into the metabolic reprogramming that accompanies disease states. Here, the authors use Raman spectro-microscopy for non-invasive metabolite analysis and identification of druggable metabolic susceptibilities in single live melanoma cells.

    • Jiajun Du
    • Yapeng Su
    • Lu Wei
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The Cancer Genome Atlas Research Network reports an integrative analysis of more than 400 samples of clear cell renal cell carcinoma based on genomic, DNA methylation, RNA and proteomic characterisation; frequent mutations were identified in the PI(3)K/AKT pathway, suggesting this pathway might be a potential therapeutic target, among the findings is also a demonstration of metabolic remodelling which correlates with tumour stage and severity.

    • Chad J. Creighton
    • Margaret Morgan
    • Heidi J. Sofia.
    ResearchOpen Access
    Nature
    Volume: 499, P: 43-49
  • Disordered hepatic glucagon response contributes to hyperglycemia in diabetes via gluconeogenesis. Here the authors report that the mitochondrial β-oxidation enzyme HADHA promotes β-hydroxybutyrate production, which negatively regulates hepatic gluconeogenesis during glucagon challenge by targeting HDAC7 in mice.

    • An Pan
    • Xiao-Meng Sun
    • Lian-Wen Qi
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-13
  • We provide observational evidence that suggests the presence of a molten silicate layer above the core of Mars, which is overlain by a partially molten layer, indicating that the core of Mars is smaller than previously thought.

    • Henri Samuel
    • Mélanie Drilleau
    • William B. Banerdt
    ResearchOpen Access
    Nature
    Volume: 622, P: 712-717
  • A human–SARS-CoV-2 protein interaction map highlights cellular processes that are hijacked by the virus and that can be targeted by existing drugs, including inhibitors of mRNA translation and predicted regulators of the sigma receptors.

    • David E. Gordon
    • Gwendolyn M. Jang
    • Nevan J. Krogan
    Research
    Nature
    Volume: 583, P: 459-468