In this work, we systematically study heat conduction in SiC nanostructures, including nanomembranes, nanowires, and phononic crystals. Our measurements show that the thermal conductivity of nanostructures is several times lower than that in bulk and the values scale proportionally to the narrowest dimension of the structures. Additionally, we probed phonon mean free path and coherent heat conduction in these nanostructures. Our theoretical model links the observed suppression of heat conduction with the surface phonon scattering, which limits the phonon mean free path and thus reduces the thermal conductivity.
- Roman Anufriev
- Yunhui Wu
- Masahiro Nomura