Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatially resolved subcellular protein–protein interactomics in drug-perturbed lung-cancer cultures and tissues

Abstract

Protein–protein interactions (PPIs) regulate signalling pathways and cell phenotypes, and the visualization of spatially resolved dynamics of PPIs would thus shed light on the activation and crosstalk of signalling networks. Here we report a method that leverages a sequential proximity ligation assay for the multiplexed profiling of PPIs with up to 47 proteins involved in multisignalling crosstalk pathways. We applied the method, followed by conventional immunofluorescence, to cell cultures and tissues of non-small-cell lung cancers with a mutated epidermal growth-factor receptor to determine the co-localization of PPIs in subcellular volumes and to reconstruct changes in the subcellular distributions of PPIs in response to perturbations by the tyrosine kinase inhibitor osimertinib. We also show that a graph convolutional network encoding spatially resolved PPIs can accurately predict the cell-treatment status of single cells. Multiplexed proximity ligation assays aided by graph-based deep learning can provide insights into the subcellular organization of PPIs towards the design of drugs for targeting the protein interactome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of iseqPLA for subcellular spatial-signalling networks.
Fig. 2: PPI networks, co-expression analysis and predictive models of 16-plex profiling for 5 PPIs and 6 signalling and organelle markers in HCC827 cells.
Fig. 3: Quantification, co-expression and modelling of 34-plex profiling for 13 PPIs and 8 signalling and organelle markers in HCC827.
Fig. 4: Predictive models in 2D and 3D of 5, 9 and 13 PPIs in HCC827 cells.
Fig. 5: Evaluation of drug perturbing PPIs using VP drug in HCC827 cells.
Fig. 6: Multiple PLA assays generated 47-plex protein profiles in HCC827 cells.
Fig. 7: Quantification and modelling of 16-plex profiling for 5 PPIs and 6 organelle signalling markers in HCC827-cell-derived mouse xenografts.
Fig. 8: Quantification of 17-plex profiling for 5 PPIs and 7 organelle signalling markers in patients with EGFRm NSCLC.

Similar content being viewed by others

Data availability

The main data supporting the results of this study are available within the paper and its Supplementary Information. The statistics needed to recreate the figures are provided as Source Data. The raw data are available in figshare105. Source data are provided with this paper.

Code availability

The custom codes used in the study are available in GitHub106.

References

  1. Gu, J. et al. MEK or ERK inhibition effectively abrogates emergence of acquired osimertinib resistance in the treatment of EGFR-mutant lung cancers. Cancer 126, 3788–3799 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Cheng, H. et al. Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment. Lung Cancer Manage. 3, 67–75 (2014).

    Article  CAS  Google Scholar 

  3. Xin, X. et al. CD147/EMMPRIN overexpression and prognosis in cancer: a systematic review and meta-analysis. Sci. Rep. 6, 32804 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kurppa, K. J. et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37, 104–122.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ando, T. et al. EGFR regulates the Hippo pathway by promoting the tyrosine phosphorylation of MOB1. Commun. Biol. 4, 1237 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nguyen, C. D. K. & Yi, C. YAP/TAZ signaling and resistance to cancer therapy. Trends Cancer 5, 283–296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei, L. et al. Verteporfin reverses progestin resistance through YAP/TAZ-PI3K-Akt pathway in endometrial carcinoma. Cell Death Discov. 9, 30 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wei, C. & Li, X. Verteporfin inhibits cell proliferation and induces apoptosis in different subtypes of breast cancer cell lines without light activation. BMC Cancer 20, 1042 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaushik, S. et al. A tyrosine kinase protein interaction map reveals targetable EGFR network oncogenesis in lung cancer. Preprint at bioRxiv https://doi.org/10.1101/2020.07.02.185173 (2020).

  10. Lee, H.-W. et al. Profiling of protein–protein interactions via single-molecule techniques predicts the dependence of cancers on growth-factor receptors. Nat. Biomed. Eng. 2, 239–253 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Rajapakse, H. E. et al. Time-resolved luminescence resonance energy transfer imaging of protein–protein interactions in living cells. Proc. Natl Acad. Sci. USA 107, 13582–13587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maurel, D. et al. Cell-surface protein–protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat. Methods 5, 561–567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jalili, R., Horecka, J., Swartz, J. R., Davis, R. W. & Persson, H. H. J. Streamlined circular proximity ligation assay provides high stringency and compatibility with low-affinity antibodies. Proc. Natl Acad. Sci. USA 115, E925–E933 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klaesson, A. et al. Improved efficiency of in situ protein analysis by proximity ligation using UnFold probes. Sci. Rep. 8, 5400 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Krieger, C. C., Boutin, A., Neumann, S. & Gershengorn, M. C. Proximity ligation assay to study TSH receptor homodimerization and crosstalk with IGF-1 receptors in human thyroid cells. Front. Endocrinol. 13, 989626 (2022).

    Article  Google Scholar 

  16. Krzeptowski, W. et al. Proximity ligation assay detection of protein–DNA interactions—is there a link between heme oxygenase-1 and G-quadruplexes? Antioxidants 10, 94 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ooki, T. & Hatakeyama, M. Protocol for visualizing conditional interaction between transmembrane and cytoplasmic proteins. STAR Protoc. 2, 100430 (2021).

  18. Vistain, L. et al. Quantification of extracellular proteins, protein complexes and mRNAs in single cells by proximity sequencing. Nat. Methods 19, 1578–1589 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  PubMed  Google Scholar 

  20. Fredriksson, S. Visualizing signal transduction pathways by quantifying protein–protein interactions in native cells and tissue. Nat. Methods 6, i–ii (2009).

    Article  CAS  Google Scholar 

  21. Alam, M. S. Proximity Ligation Assay (PLA). Curr. Protoc. Immunol. 123, e58 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cai, S. et al. Multiplexed protein profiling reveals spatial subcellular signaling networks. iScience 25, 104980 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baker, S. J., Poulikakos, P. I., Irie, H. Y., Parekh, S. & Reddy, E. P. CDK4: a master regulator of the cell cycle and its role in cancer. Genes Cancer 13, 21–45 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown, K. et al. Population pharmacokinetics and exposure-response of osimertinib in patients with non-small cell lung cancer. Br. J. Clin. Pharm. 83, 1216–1226 (2017).

    Article  CAS  Google Scholar 

  25. Shi, P. et al. Overcoming acquired resistance to AZD9291, a third generation EGFR inhibitor, through modulation of MEK/ERK-dependent Bim and Mcl-1 degradation. Clin. Cancer Res. 23, 6567–6579 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Willis, S. N. et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 19, 1294–1305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hwang, H. C. & Clurman, B. E. Cyclin E in normal and neoplastic cell cycles. Oncogene 24, 2776–2786 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, L. et al. Targeting c-Myc to overcome acquired resistance of EGFR mutant NSCLC cells to the third generation EGFR tyrosine kinase inhibitor, osimertinib. Cancer Res. 81, 4822–4834 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, J.-Q., Miki, H., Ohmori, M., Wu, F. & Funamoto, Y. Expression of cyclin E and cyclin-dependent kinase 2 correlates with metastasis and prognosis in colorectal carcinoma. Hum. Pathol. 32, 945–953 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Xie, X., Shu, R., Yu, C., Fu, Z. & Li, Z. Mammalian AKT, the emerging roles on mitochondrial function in diseases. Aging Dis. 13, 157–174 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yuan, Q., Chen, J., Zhao, H., Zhou, Y. & Yang, Y. Structure-aware protein–protein interaction site prediction using deep graph convolutional network. Bioinformatics 38, 125–132 (2021).

    Article  PubMed  Google Scholar 

  32. Huang, Y., Wuchty, S., Zhou, Y. & Zhang, Z. SGPPI: structure-aware prediction of protein–protein interactions in rigorous conditions with graph convolutional network. Brief. Bioinform. 24, bbad020 (2023).

    Article  PubMed  Google Scholar 

  33. Wang, R.-H., Luo, T., Zhang, H.-L. & Du, P.-F. PLA-GNN: computational inference of protein subcellular location alterations under drug treatments with deep graph neural networks. Comput. Biol. Med. 157, 106775 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Fang, Z. et al. Subcellular spatially resolved gene neighborhood networks in single cells. Cell Rep. Methods 3, 100476 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burkhart, J. G. et al. Biology-inspired graph neural network encodes reactome and reveals biochemical reactions of disease. Patterns 4, 100758 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Topacio, B. R. et al. Cyclin D-Cdk4,6 drives cell-cycle progression via the retinoblastoma protein’s C-terminal helix. Mol. Cell 74, 758–770.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Christian, F., Smith, E. L. & Carmody, R. J. The regulation of NF-κB subunits by phosphorylation. Cells 5, 12 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang, S., Xiong, X. & Sun, Y. Functional characterization of SOX2 as an anticancer target. Sig. Transduct. Target. Ther. 5, 135 (2020).

    Article  CAS  Google Scholar 

  40. Li, L. et al. Protective autophagy decreases osimertinib cytotoxicity through regulation of stem cell-like properties in lung cancer. Cancer Lett. 452, 191–202 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Frank, D. O. et al. The pro-apoptotic BH3-only protein Bim interacts with components of the Translocase of the Outer Mitochondrial Membrane (TOM). PLoS ONE 10, e0123341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lalier, L. et al. TOM20-mediated transfer of Bcl2 from ER to MAM and mitochondria upon induction of apoptosis. Cell Death Dis. 12, 182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith, M. A. et al. Annotation of human cancers with EGFR signaling-associated protein complexes using proximity ligation assays. Sci. Signal. 8, ra4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yuan, X. et al. Developing TRAIL/TRAIL-death receptor-based cancer therapies. Cancer Metastasis Rev. 37, 733–748 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, X., Tang, N., Hadden, T. J. & Rishi, A. K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta 1813, 1978–1986 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Jacobsen, K. et al. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer. Nat. Commun. 8, 410 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xu, R. et al. SIRT1/PGC-1α/PPAR-γ correlate with hypoxia-induced chemoresistance in non-small cell lung cancer. Front. Oncol. 11, 682762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, A. & Pfeffer, S. R. Golgi-associated RhoBTB3 targets Cyclin E for ubiquitylation and promotes cell cycle progression. J. Cell Biol. 203, 233–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Makhoul, C. & Gleeson, P. A. Regulation of mTORC1 activity by the Golgi apparatus. Fac. Rev. 10, 50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hagey, D. W. & Muhr, J. Sox2 acts in a dose-dependent fashion to regulate proliferation of cortical progenitors. Cell Rep. 9, 1908–1920 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, C., Weiss, S. T. & Liu, Y.-Y. Graph convolutional network-based feature selection for high-dimensional and low-sample size data. Bioinformatics 39, btad135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blakely, D., Lanchantin, J. & Qi, Y. Time and space complexity of graph convolutional networks. GitHub https://qdata.github.io/deep2Read/talks-mb2019/Derrick_201906_GCN_complexityAnalysis-writeup.pdf (2019).

  53. Xiao, X., Wu, Y., Shen, F., MuLaTiAize, Y. & Xinhua, N. Osimertinib improves the immune microenvironment of lung cancer by downregulating PD-L1 expression of vascular endothelial cells and enhances the antitumor effect of bevacizumab. J. Oncol. 2022, 1531353 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hsu, P.-C. et al. YAP promotes erlotinib resistance in human non-small cell lung cancer cells. Oncotarget 7, 51922–51933 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang, C. et al. Verteporfin inhibits YAP function through up-regulating 14-3-3σ sequestering YAP in the cytoplasm. Am. J. Cancer Res. 6, 27–37 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang, Y., Ahmad, U. S., Rehman, A., Uttagomol, J. & Wan, H. YAP inhibition by verteporfin causes downregulation of desmosomal genes and proteins leading to the disintegration of intercellular junctions. Life 12, 792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Önel, T., Yıldırım, E. & Yaba, A. P-049 Verteporfin suppresses cell proliferation, survival and migration of TCam-2 human seminoma cells via inhibits the YAP-TEAD complex. Hum. Reprod. 38, dead093.414 (2023).

    Article  Google Scholar 

  58. Kim, J. et al. Hot spot analysis of YAP-TEAD protein–protein interaction using the fragment molecular orbital method and its application for inhibitor discovery. Cancers 13, 4246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, H. et al. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci. Signal. 8, ra98 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tian, X. et al. E-cadherin/β-catenin complex and the epithelial barrier. J. Biomed. Biotechnol. 2011, 567305 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. Azimi, I., Roberts-Thomson, S. J. & Monteith, G. R. Calcium influx pathways in breast cancer: opportunities for pharmacological intervention. Br. J. Pharmacol. 171, 945–960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao, M., Finlay, D., Zharkikh, I. & Vuori, K. Novel role of Src in priming Pyk2 phosphorylation. PLoS ONE 11, e0149231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Momin, A. A. et al. PYK2 senses calcium through a disordered dimerization and calmodulin-binding element. Commun. Biol. 5, 800 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, D. & Hong, J.-H. Activated PyK2 and its associated molecules transduce cellular signaling from the cancerous milieu for cancer metastasis. Int. J. Mol. Sci. 23, 15475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Sig. Transduct. Target. Ther. 6, 402 (2021).

    Article  Google Scholar 

  66. Mengie Ayele, T., Tilahun Muche, Z., Behaile Teklemariam, A., Bogale Kassie, A. & Chekol Abebe, E. Role of JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy resistance, and treatment of solid tumors: a systemic review. J. Inflamm. Res. 15, 1349–1364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Whitaker, R. H. & Cook, J. G. Stress relief techniques: p38 MAPK determines the balance of cell cycle and apoptosis pathways. Biomolecules 11, 1444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, X. et al. Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes. Nat. Commun. 15, 2342 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hu, T. et al. Single-cell spatial metabolomics with cell-type specific protein profiling for tissue systems biology. Nat. Commun. 14, 8260 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lischetti, U. et al. Dynamic thresholding and tissue dissociation optimization for CITE-seq identifies differential surface protein abundance in metastatic melanoma. Commun. Biol. 6, 830 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park, P. J. ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, P., Yang, Y., Hong, T. & Zhu, G. Proximity ligation assay: an ultrasensitive method for protein quantification and its applications in pathogen detection. Appl. Microbiol. Biotechnol. 105, 923–935 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Karlsson, F. et al. Molecular pixelation: spatial proteomics of single cells by sequencing. Nat. Methods 21, 1044–1052 (2024).

  74. Mo, X. et al. Systematic discovery of mutation-directed neo-protein-protein interactions in cancer. Cell 185, 1974–1985.e12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee, H.-W. et al. Real-time single-molecule co-immunoprecipitation analyses reveal cancer-specific Ras signalling dynamics. Nat. Commun. 4, 1505 (2013).

    Article  PubMed  Google Scholar 

  76. Free, R. B., Hazelwood, L. A. & Sibley, D. R. Identifying novel protein–protein interactions using co-immunoprecipitation and mass spectroscopy. Curr. Protoc. Neurosci. https://doi.org/10.1002/0471142301.ns0528s46 (2009).

  77. Johnson, K. L. et al. Revealing protein–protein interactions at the transcriptome scale by sequencing. Mol. Cell 81, 4091–4103.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, B., Park, B.-H., Karpinets, T. & Samatova, N. F. From pull-down data to protein interaction networks and complexes with biological relevance. Bioinformatics 24, 979–986 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Jain, A., Liu, R., Xiang, Y. K. & Ha, T. Single-molecule pull-down for studying protein interactions. Nat. Protoc. 7, 445–452 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yachie, N. et al. Pooled-matrix protein interaction screens using Barcode Fusion Genetics. Mol. Syst. Biol. 12, 863 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lievens, S. et al. Array MAPPIT: high-throughput interactome analysis in mammalian cells. J. Proteome Res. 8, 877–886 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Wu, Y., Li, Q. & Chen, X.-Z. Detecting protein–protein interactions by far western blotting. Nat. Protoc. 2, 3278–3284 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Kristensen, A. R., Gsponer, J. & Foster, L. J. A high-throughput approach for measuring temporal changes in the interactome. Nat. Methods 9, 907–909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Miura, K. An overview of current methods to confirm protein–protein interactions. Protein Pept. Lett. 25, 728–733 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qin, W., Myers, S. A., Carey, D. K., Carr, S. A. & Ting, A. Y. Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery. Nat. Commun. 12, 4980 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kaewsapsak, P., Shechner, D. M., Mallard, W., Rinn, J. L. & Ting, A. Y. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. eLife 6, e29224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Roux, K. J., Kim, D. I., Burke, B. & May, D. G. BioID: a screen for protein–protein interactions. Curr. Protoc. Protein Sci. 91, 19.23.1–19.23.15 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Cho, K. F. et al. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15, 3971–3999 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Park, S.-H., Ko, W., Lee, H. S. & Shin, I. Analysis of protein–protein interaction in a single live cell by using a FRET system based on genetic code expansion technology. J. Am. Chem. Soc. 141, 4273–4281 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Mo, X.-L. & Fu, H. in High Throughput Screening: Methods and Protocols (ed. Janzen, W. P.) 263–271 (Springer, 2016).

  91. ul Ain Farooq, Q., Shaukat, Z., Aiman, S. & Li, C.-H. Protein–protein interactions: methods, databases, and applications in virus-host study. World J. Virol. 10, 288–300 (2021).

    Article  Google Scholar 

  92. Muhlich, J. L. et al. Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR. Bioinformatics 38, 4613–4621 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Bannon, D. et al. DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes. Nat. Methods 18, 43–45 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Graham, S. et al. Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019).

    Article  PubMed  Google Scholar 

  97. Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. Preprint at https://arxiv.org/abs/1609.02907 (2017).

  98. Veličković, P. et al. Graph attention networks. Preprint at https://arxiv.org/abs/1710.10903 (2018).

  99. Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural networks? Preprint at https://arxiv.org/abs/1810.00826 (2019).

  100. Morris, C. et al. Weisfeiler and Leman go neural: higher-order graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence 4602–4609 (2019).

  101. Hamilton, W. L., Ying, R. & Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems 1025–1035 (2017).

  102. Li, Y., Tarlow, D., Brockschmidt, M. & Zemel, R. Gated graph sequence neural networks. Preprint at https://arxiv.org/abs/1511.05493v4 (2017).

  103. Hu, G. et al. Attribute-enhanced face recognition with neural tensor fusion networks. In 2017 IEEE International Conference on Computer Vision (ICCV) 3764–3773 (IEEE, 2017).

  104. Chen, R. J. et al. Pathomic Fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging 41, 757–770 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cai, S. et al. iseqPLA. figshare https://figshare.com/s/d58cb4376bb235c74ee6 (2024).

  106. Cai, S. et al. iseqPLA. GitHub https://github.com/coskunlab/iseqPLA (2024).

Download references

Acknowledgements

A.F.C. acknowledges a Career Award from the Scientific Interface of Burroughs Wellcome Fund and a Bernie-Marcus Early-Career Professorship. A.F.C. was supported by start-up funds from the Georgia Institute of Technology and Emory University. Research reported in this publication was supported by Lung Spore and the National Cancer Institute of the National Institutes of Health under Award Number P50CA217691 from the Career Enhancement Program, R33CA291197, NSF CAREER and R35GM151028. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Research reported in this publication was supported in part by the Cancer Tissue and Pathology Shared Resource and the Data and Technology Applications Shared Resource of Winship Cancer Institute of Emory University and NIH/NCI under award number P30CA138292.

Author information

Authors and Affiliations

Authors

Contributions

S.C., T.H., F.G.R.M., E.O. and A.F.C. designed experiments, analysed data and wrote the manuscript. M.W. analysed data. Y.-T.O. designed experiments and analysed data. S.C., A.V., F.G.R.M., N.Z., T.Z., S.D., A.P. and Y.-T.O. conducted experiments. S.C., T.H., A.F.C., F.S., S.S.R. and S.-Y.S. contributed materials.

Corresponding author

Correspondence to Ahmet F. Coskun.

Ethics declarations

Competing interests

A.F.C., S.C. and T.H. declare a patent application related to the spatial-signalling interactomics assay (US Provisional 63/399,427 and US Application No. 18/452,178). The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Feixiong Cheng, Xiangxiang Zeng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Evaluation and quantification of iseqPLA properties in HCC827 cells.

a, Visualization of the workflow evaluating PLA sensitivity, specificity, baseline vs PPI, and batch consistency in HCC827 cells. Following different treatments, the cells were stained with PLA or IF. The detailed experimental designs are in Supplementary Fig. 6a, 7a, 8a, and 9a, Created with BioRender.com. b, The comparison of PPI counts in HCC827 cells between those treated with a range of Osimertinib for 12 hours. The detailed results are in Supplementary Fig. 6. c, The comparison of PPI counts in two HCC827AR cells. The detailed results are in Supplementary Fig. 7. d, The comparison of PPI counts in HCC827 cells between those treated with and without Osimertinib. The baseline levels of 4 proteins in HCC827 cells with and without treatment were quantified on the right panel. The detailed results are in Supplementary Fig. 8. e, The comparison of PPI counts from 4 pairs in HCC827 cells from two batches treated with and without 12-hour Osimertinib. The detailed results are in Supplementary Fig. 9. Statistical testing was performed using Mann Whitney Wilcoxon Test two-sided (***: 0.0001 < p <= 0.001, ****: p < =0.0001). Box plots and violin plots: median (horizontal line inside box), 25th and 75th percentiles (box), 25th and 75th percentiles ±1.5 times the interquartile range (whiskers).

Source data

Extended Data Fig. 2 Schematics showing the graphical implementation of spatial neighbouring information.

a, Schematic showing the PPI events spatial information incorporated in the graph representation of PPI spatial neighbourhood. During each step of the spPPI-GNN, from the spatial graph, each PPI neighbour’s embedding is incorporated until a global cell-level embedding is extracted and used for prediction. Created with BioRender.com. b, Example of cell PPI events spatial graph showing similar PPI event type density with different PPI event neighbours’ distribution. This shows a spatial distribution heterogeneity of PPI events at the subcellular level. c, Line plot showing the variation of PPI type neighbouring count across cells (x-axis: cell ID) showed in b.

Source data

Extended Data Fig. 3 Orthogonal validation of p-ERK/c-Myc interaction and expression in HCC827 cells.

a, Schematic illustration of measuring p-ERK/c-Myc interaction using co-IP and PLA, Created with BioRender.com. b, Top Panel of western blots depicted results of co-IP of p-ERK and c-Myc in c-Myc pull-down samples. The cells were treated with 100 nM Osimertinib for 0, 8 12 hours. N-IgG served as a negative control for co-IP. The bottom panel demonstrated the results of p-ERK, c-Myc, and GAPDH expression run on different gels from the same HCC827 cell lysate. GAPDH was used as a negative control. P-ERK expressions at short and long exposure were shown in the gel. c, Workflow of measuring 9 phosphorylated proteins in HCC827 cells using Luminex. Created with BioRender.com. d, Quantification of 9 phosphorylated proteins in HCC827 cells treated with and without 12-hour 100 nM Osimertinib was shown in the heatmap and bar graph. Bar graphs are shown as mean ± 1 SD. e, Quantification of p-ERK/c-Myc PPI counts in different ROIs with a high, low, and medium expression of p-ERK/c-Myc in HCC827 cells. The right graph shows the cumulative density which measures the percentage of cells expressing different numbers of p-ERK/c-Myc events per cell across three ROIs. The detailed statistics for each ROI are shown in Supplementary Fig. 25. Box plots: median (horizontal line inside box), 25th and 75th percentiles (box), 25th and 75th percentiles ±1.5 times the interquartile range (whiskers).

Source data

Extended Data Fig. 4 Quantification of 26-plex profiling for 9 PPIs and 8 signalling and organelle markers in HCC827.

a, The comparison of PPI counts in HCC827 whole cells, nuclei, and cytosol between those treated with and without Osimertinib. Statistical testing was performed using Mann Whitney Wilcoxon Test two-sided (***: 0.0001 < p <= 0.001, ****: p < =0.0001). The total cell numbers are 836 and 655 for untreated and Osimertinib-treated cells in the comparison of PPI count per cell. b, UMAP visualizes the similarity of p-ERK/c-Myc counts in the 5PPI and 9PPI datasets. Box plots: median (horizontal line inside box), 25th and 75th percentiles (box), 25th and 75th percentiles ±1.5 times the interquartile range (whiskers).

Source data

Extended Data Fig. 5 Quantification of PPIs and Ki67 in HCC827 cells.

a, The PPI count comparison in cytosol and nuclei is separately shown in the figure. The HCC827 cells were treated with VP at 0, 1, and 10 µM for 24 hours. b, The comparison of Ki67 density in HCC827 cells treated with and without VP. Ki67 density was calculated by dividing the Ki67 positive regions by the nuclear size. c, The comparison of Ki67 density in HCC827 cells treated with and without 100 nM Osimertinib for 12 hours. Statistical testing was performed using Mann Whitney Wilcoxon Test two-sided (***: 0.0001 < p <= 0.001, ****: p < =0.0001). Box plots and violin plots: median (horizontal line inside box), 25th and 75th percentiles (box), 25th and 75th percentiles ±1.5 times the interquartile range (whiskers).

Source data

Extended Data Fig. 6 PPI counts per cell and PPI density in patient tissues.

a, Quantification of PPI counts per stromal, per immune cell with immune neighbours, and PPI counts per tumour cell with tumour neighbours at the single cell level in the responder tissue. Statistical testing was performed using t-test independent samples with Bonferroni correction (***: 0.0001 < p <= 0.001, ****: p < =0.0001). b, Comparison of the density of PPI counts in lymphocyte-enriched regions between responders and non-responders. A plot with a wider y-axis range is in Supplementary Fig. 40d to show the complete individual data points. Example images of 5 PPIs expression in lymphocyte-enriched regions are shown on the right. The first column is the visualization of 5 PPIs in lymphocyte-enriched regions. The second column displays the distributions of Sox2/Oct4 PPI in red. The third column exhibits the distributions of NF-kB/p-P90RSK PPIs in green. Statistical testing was performed using t-test independent samples (***: 0.0001 < p <= 0.001, ****: p < =0.0001). Box plots and Violin plots: median (horizontal line inside box), 25th and 75th percentiles (box), 25th and 75th percentiles ±1.5 times the interquartile range (whiskers).

Source data

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Peer Review File

Supplementary Data

Source data and Statistics for the supplementary figures.

Source data

Source Data Fig. 2

Source data and statistics.

Source Data Fig. 3

Source data and statistics.

Source Data Fig. 4

Source data and statistics.

Source Data Fig. 5

Source data and statistics.

Source Data Fig. 6

Source data and statistics.

Source Data Fig. 7

Source data and statistics.

Source Data Fig. 8

Source data and statistics.

Source Data Extended Data Fig. 1

Source data and statistics.

Source Data Extended Data Fig. 2

Source data and statistics.

Source Data Extended Data Fig. 3

Source data and statistics, and unprocessed western blots.

Source Data Extended Data Fig. 4

Source data and statistics.

Source Data Extended Data Fig. 5

Source data and statistics.

Source Data Extended Data Fig. 6

Source data and statistics.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Hu, T., Venkataraman, A. et al. Spatially resolved subcellular protein–protein interactomics in drug-perturbed lung-cancer cultures and tissues. Nat. Biomed. Eng 9, 1039–1061 (2025). https://doi.org/10.1038/s41551-024-01271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-024-01271-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer