Abstract
Ambitious climate policies, as well as economic development, education, technological progress and less resource-intensive lifestyles, are crucial elements for progress towards the UN Sustainable Development Goals (SDGs). However, using an integrated modelling framework covering 56 indicators or proxies across all 17 SDGs, we show that they are insufficient to reach the targets. An additional sustainable development package, including international climate finance, progressive redistribution of carbon pricing revenues, sufficient and healthy nutrition and improved access to modern energy, enables a more comprehensive sustainable development pathway. We quantify climate and SDG outcomes, showing that these interventions substantially boost progress towards many aspects of the UN Agenda 2030 and simultaneously facilitate reaching ambitious climate targets. Nonetheless, several important gaps remain; for example, with respect to the eradication of extreme poverty (180 million people remaining in 2030). These gaps can be closed by 2050 for many SDGs while also respecting the 1.5 °C target and several other planetary boundaries.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The data and analysis scripts supporting the findings of this study112 are available at https://doi.org/10.5281/zenodo.4787613. The following publicly accessible datasets were used for the institutional quality and conflict fatalities models (Supplementary Information references): Varieties of Democracy (V-Dem) (Country–Year/Country–Data) Dataset v.10, the Uppsala Conflict Data Program (UCDP) Georeferenced Event Dataset (GED) Global v.20.1 and Population and Human Capital Stocks data by the Wittgenstein Centre. They can be accessed via the following links: https://www.v-dem.net/en/data/archive/previous-data/v-dem-dataset/; https://ucdp.uu.se/downloads/; http://dataexplorer.wittgensteincentre.org/wcde-v2/
Code availability
Both REMIND and MAgPIE are available open source under the following links: REMIND: https://github.com/remindmodel/remind; MAgPIE: https://github.com/magpiemodel/magpie. The exact model versions used are: REMIND: https://github.com/bs538/remind/tree/SDP_runs; MAgPIE: https://github.com/magpiemodel/magpie/releases/tag/v4.2.1
References
The Emissions Gap Report 2019 (UNEP, 2019).
Report of the Secretary-General on SDG Progress 2019 (United Nations, 2019).
Rogelj, J. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 2 (WMO, 2018).
Zhenmin, L. & Espinosa, P. Tackling climate change to accelerate sustainable development. Nat. Clim. Change 9, 494–496 (2019).
Sustainable development through climate action. Nat. Clim. Change 9, 491 (2019).
Pradhan, P., Costa, L., Rybski, D., Lucht, W. & Kropp, J. P. A systematic study of sustainable development goal (SDG) interactions. Earths Future 5, 1169–1179 (2017).
McCollum, D. L. et al. Connecting the Sustainable Development Goals by their energy inter-linkages. Environ. Res. Lett. 13, 033006 (2018).
Transformations to Achieve the Sustainable Development Goals (IIASA, 2018); https://doi.org/10.22022/TNT/07-2018.15347
Sachs, J. D. et al. Six transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2, 805–814 (2019).
van Soest, H. L. et al. Analysing interactions among Sustainable Development Goals with integrated assessment models. Glob. Transit. 1, 210–225 (2019).
Breuer, A., Janetschek, H. & Malerba, D. Translating sustainable development goal (SDG) interdependencies into policy advice. Sustainability 11, 2092 (2019).
O’Neill, B. C. et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Change 10, 1074–1084 (2020).
Moyer, J. D. & Bohl, D. K. Alternative pathways to human development: assessing trade-offs and synergies in achieving the Sustainable Development Goals. Futures 105, 199–210 (2019).
von Stechow, C. et al. Integrating global climate change mitigation goals with other sustainability objectives: a synthesis—supplement. Annu. Rev. Environ. Resour. 40, 363–394 (2015).
Jakob, M. & Steckel, J. C. Implications of climate change mitigation for sustainable development. Environ. Res. Lett. 11, 104010 (2016).
McCollum, D. L. et al. Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nat. Energy 3, 589–599 (2018).
Iyer, G. et al. Implications of sustainable development considerations for comparability across nationally determined contributions. Nat. Clim. Change 8, 124–129 (2018).
Fujimori, S. et al. Measuring the sustainable development implications of climate change mitigation. Environ. Res. Lett. 15, 085004 (2020).
Fuso Nerini, F. et al. Connecting climate action with other Sustainable Development Goals. Nat. Sustain. 2, 674–680 (2019).
Hof, C. et al. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc. Natl Acad. Sci. USA 115, 13294–13299 (2018).
Stevanović, M. et al. Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: consequences for food prices. Environ. Sci. Technol. 51, 365–374 (2017).
Fujimori, S. et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2, 386–396 (2019).
Pachauri, S. et al. Pathways to achieve universal household access to modern energy by 2030. Environ. Res. Lett. 8, 024015 (2013).
Cameron, C. et al. Policy trade-offs between climate mitigation and clean cook-stove access in South Asia. Nat. Energy 1, 15010 (2016).
Humpenöder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett. 13, 024011 (2018).
Bertram, C. et al. Targeted policies can compensate most of the increased sustainability risks in 1.5 °C mitigation scenarios. Environ. Res. Lett. 13, 064038 (2018).
Tosun, J. & Leininger, J. Governing the interlinkages between the Sustainable Development Goals: approaches to attain policy integration. Glob. Chall. 1, 1700036 (2017).
van Vuuren, D. P. et al. Pathways to achieve a set of ambitious global sustainability objectives by 2050: explorations using the IMAGE integrated assessment model. Technol. Forecast. Soc. Change 98, 303–323 (2015).
Liu, J.-Y. et al. The importance of socioeconomic conditions in mitigating climate change impacts and achieving Sustainable Development Goals. Environ. Res. Lett. 16, 014010 (2020).
van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).
Zimm, C., Sperling, F. & Busch, S. Identifying sustainability and knowledge gaps in socio-economic pathways vis-à-vis the Sustainable Development Goals. Economies 6, 20 (2018).
van Vuuren, D. P. et al. Defining a sustainable development target space for 2030 and 2050. Preprint at EarthArxiv https://doi.org/10.31223/X5B62B (2021).
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and Sustainable Development Goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).
Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).
Willett, W. et al. Food in the anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).
Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).
Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J. & Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 571, 335–342 (2019).
Hofmann, M. & Schellnhuber, H. J. Ocean acidification: a millennial challenge. Energy Environ. Sci. 3, 1883–1896 (2010).
Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).
Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 370, 705–708 (2020).
Millward-Hopkins, J., Steinberger, J. K., Rao, N. D. & Oswald, Y. Providing decent living with minimum energy: a global scenario. Glob. Environ. Change 65, 102168 (2020).
Madeddu, S. et al. The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat). Environ. Res. Lett. 15, 124004 (2020).
Brundtland, G. et al. Our Common Future. Brundtland Report (Oxford Univ. Press, 1990).
Gómez-Sanabria, A. et al. Sustainable wastewater management in Indonesia’s fish processing industry: bringing governance into scenario analysis. J. Environ. Manag. 275, 111241 (2020).
Acemoglu, D. & Robinson, J. Why Nations Fail: The Origins of Power, Prosperity, and Poverty (Crown Publishers, 2012).
Coppedge, M. et al. V-Dem Codebook V10 (SSRN, 2020); https://doi.org/10.2139/ssrn.3557877
Sundberg, R. & Melander, E. Introducing the UCDP Georeferenced Event Dataset. J. Peace Res. 50, 523–532 (2013).
Pettersson, T. & Öberg, M. Organized violence, 1989–2019. J. Peace Res. 57, 597–613 (2020).
O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).
Fujimori, S., Hasegawa, T. & Oshiro, K. An assessment of the potential of using carbon tax revenue to tackle poverty. Environ. Res. Lett. 15, 114063 (2020).
Soergel, B. et al. Combining ambitious climate policies with efforts to eradicate poverty. Nat. Commun. 12, 2342 (2021).
Franks, M., Lessmann, K., Jakob, M., Steckel, J. C. & Edenhofer, O. Mobilizing domestic resources for the Agenda 2030 via carbon pricing. Nat. Sustain. 1, 350–357 (2018).
Byers, E. et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 13, 055012 (2018).
Sachs, J. & Schmidt-Traub, G. The Sustainable Development Goals and COVID-19 (Cambridge Univ. Press, 2020).
Naidoo, R. & Fisher, B. Reset Sustainable Development Goals for a pandemic world. Nature 583, 198–201 (2020).
Hepburn, C., O’Callaghan, B., Stern, N., Stiglitz, J. & Zenghelis, D. Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change? Oxf. Rev. Econ. Policy 36, S359–S381 (2020).
Andrijevic, M., Schleussner, C.-F., Gidden, M. J., McCollum, D. L. & Rogelj, J. COVID-19 recovery funds dwarf clean energy investment needs. Science 370, 298–300 (2020).
Kc, S. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).
Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 200–214 (2017).
Rao, N. D., Sauer, P., Gidden, M. & Riahi, K. Income inequality projections for the Shared Socioeconomic Pathways (SSPs). Futures 105, 27–39 (2018).
Roelfsema, M. et al. Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nat. Commun. 11, 2096 (2020).
Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).
Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: Model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).
Baumstark, L. et al. REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits. Preprint at Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2021-85 (2021).
Lucas, P. L., van Vuuren, D. P., Olivier, J. G. J. & den Elzen, M. G. J. Long-term reduction potential of non-CO2 greenhouse gases. Environ. Sci. Policy 10, 85–103 (2007).
Bauer, N. et al. Quantification of an efficiency–sovereignty trade-off in climate policy. Nature 588, 261–266 (2020).
Höhne, N., den Elzen, M. & Escalante, D. Regional GHG reduction targets based on effort sharing: a comparison of studies. Clim. Policy 14, 122–147 (2014).
Tavoni, M. et al. Post-2020 climate agreements in the major economies assessed in the light of global models. Nat. Clim. Change 5, 119–126 (2015).
Leimbach, M. & Giannousakis, A. Burden sharing of climate change mitigation: global and regional challenges under shared socio-economic pathways. Climatic Change 155, 273–291 (2019).
Banerjee, A., Niehaus, P. & Suri, T. Universal Basic Income in the Developing World (NBER, 2019); https://www.nber.org/papers/w25598
Baer, P., Athanasiou, T. & Kartha, S. The Greenhouse Development Rights Framework: The Right to Development in a Climate Constrained World 2nd edn (Heinrich Böll Foundation, Christian Aid, EcoEquity and the Stockholm Environment Institute, 2008).
Klein, D. et al. The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE. Climatic Change 123, 705–718 (2014).
Bauer, N. et al. Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective. Climatic Change 163, 1675–1693 (2020).
Luderer, G. et al. Description of the REMIND Model (Version 1.6) (PIK, 2015); https://www.pik-potsdam.de/en/institute/departments/transformation-pathways/models/remind/remind16_description_2015_11_30_final
Dietrich, J. P. et al. MAgPIE 4—a modular open-source framework for modeling global land systems. Geosci. Model Dev. 12, 1299–1317 (2019).
Schaphoff, S. et al. LPJmL4—a dynamic global vegetation model with managed land – Part 1: model description. Geosci. Model Dev. 11, 1343–1375 (2018).
Luderer, G. et al. REMIND—REgional Model of INvestments and Development (Zenodo, 2020); https://doi.org/10.5281/zenodo.4091409
REMIND—REgional Model of INvestments and Development—Overview (Potsdam Institute for Climate Impact Research, 2020); https://rse.pik-potsdam.de/doc/remind/2.1.3/
Dietrich, J. P. et al. MAgPIE—An Open Source Land-use Modeling Framework (Zenodo, 2020); https://doi.org/10.5281/zenodo.3829896
MAgPIE—An Open Source Land-use Modeling Framework 4.2.1 (Potsdam Institute for Climate Impact Research, 2020); https://rse.pik-potsdam.de/doc/magpie/4.2.1/
Dietrich, J. P., Popp, A. & Lotze-Campen, H. Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model. Ecol. Model. 263, 233–243 (2013).
Bodirsky, B. L. et al. N2O emissions from the global agricultural nitrogen cycle—current state and future scenarios. Biogeosciences 9, 4169–4197 (2012).
Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).
Popp, A. et al. Land-use protection for climate change mitigation. Nat. Clim. Change 4, 1095–1098 (2014).
Scholes, R. J. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).
Purvis, A. et al. in Advances in Ecological Research (eds Bohan, D. A. et al.) 201–241 (Academic Press, 2018).
Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).
Levesque, A. et al. How much energy will buildings consume in 2100? A global perspective within a scenario framework. Energy 148, 514–527 (2018).
Steckel, J. C., Brecha, R. J., Jakob, M., Strefler, J. & Luderer, G. Development without energy? Assessing future scenarios of energy consumption in developing countries. Ecol. Econ. 90, 53–67 (2013).
Rao, N. D., Min, J. & Mastrucci, A. Energy requirements for decent living in India, Brazil and South Africa. Nat. Energy 4, 1025–1032 (2019).
Rissman, J. et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy 266, 114848 (2020).
Levesque, A., Pietzcker, R. C. & Luderer, G. Halving energy demand from buildings: the impact of low consumption practices. Technol. Forecast. Soc. Change 146, 253–266 (2019).
Bodirsky, B. L. et al. The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Sci. Rep. 10, 19778 (2020).
Valin, H. et al. The future of food demand: understanding differences in global economic models. Agric. Econ. 45, 51–67 (2014).
Banerjee, A., Niehaus, P. & Suri, T. Universal basic income in the developing world. Annu. Rev. Econ. 11, 959–983 (2019).
Hubacek, K., Baiocchi, G., Feng, K. & Patwardhan, A. Poverty eradication in a carbon constrained world. Nat. Commun. 8, 912 (2017).
Andrijevic, M., Crespo Cuaresma, J., Muttarak, R. & Schleussner, C.-F. Governance in socioeconomic pathways and its role for future adaptive capacity. Nat. Sustain. 3, 35–41 (2020).
Hegre, H. et al. Forecasting civil conflict along the shared socioeconomic pathways. Environ. Res. Lett. 11, 054002 (2016).
Crespo Cuaresma, J. Income projections for climate change research: a framework based on human capital dynamics. Glob. Environ. Change 42, 226–236 (2017).
Andrijevic, M., Crespo Cuaresma, J., Muttarak, R. & Schleussner, C.-F. Governance in socioeconomic pathways and its role for future adaptive capacity. Nat. Sustain. 3, 35–41 (2020).https://doi.org/10.1038/s41893-019-0405-0
Rauner, S. et al. Coal-exit health and environmental damage reductions outweigh economic impacts. Nat. Clim. Change 10, 308–312 (2020).
Amann, M. The GAINS Integrated Assessment Model (European Consortium for Modelling of Air Pollution and Climate Strategies - EC4MACS, 2012); https://www.ec4macs.eu/content/report/EC4MACS_Publications/MR_Final%20in%20pdf/GAINS_Methodologies_Final.pdf
Van Dingenen, R. et al. TM5-FASST: a global atmospheric source–receptor model for rapid impact analysis of emission changes on air quality and short-lived climate pollutants. Atmos. Chem. Phys. 18, 16173–16211 (2018).
Montoya, M. et al. The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions. Clim. Dynam. 25, 237–263 (2005).
Fichefet, T. & Maqueda, M. A. M. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res. Oceans 102, 12609–12646 (1997).
Pacanowski, R. C. & Griffies, S. M. The MOM-3 Manual (Geophysics Fluid Dynamics Laboratory/NOAA, 1999).
Hofmann, M. & Maqueda, M. A. M. Performance of a second-order moments advection scheme in an Ocean General Circulation Model. J. Geophys. Res. Oceans 111, C05006 (2006).
Six, K. D. & Maier‐Reimer, E. Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model. Glob. Biogeochem. Cycles 10, 559–583 (1996).
Hofmann, M., Mathesius, S., Kriegler, E., van Vuuren, D. P. & Schellnhuber, H. J. Strong time dependence of ocean acidification mitigation by atmospheric carbon dioxide removal. Nat. Commun. 10, 5592 (2019).
Soergel, B. et al. Data Repository —A Sustainable Development Pathway for Climate Action within the UN 2030 Agenda (Zenodo, 2021); https://doi.org/10.5281/zenodo.4787613
World Energy Outlook 2019 (IEA, 2019); https://www.iea.org/reports/world-energy-outlook-2019
Acknowledgements
We thank D. Soergel for valuable comments on figure designs and proof-reading of the manuscript and F. Piontek, S. Madeddu and the other members of the REMIND and MAgPIE teams for helpful discussions. The SDG icons and circle used in the figures and tables were created by the United Nations: https://www.un.org/sustainabledevelopment/sustainable-development-goals/. The content of this publication has not been approved by the United Nations and does not reflect the views of the United Nations or its officials or Member States. This work has been partially funded through the project SHAPE. SHAPE is part of AXIS, an ERA-NET initiated by JPI Climate and funded by FORMAS (SE), FFG/BMWFW (AT), DLR/BMBF (DE, grant no. 01LS1907A), NWO (NL) and RCN (NO) with cofunding by the European Union (grant no. 776608). This work was also supported by the European Union’s Horizon 2020 research and innovation programme under grant nos. 821124 (NAVIGATE) and 821471 (ENGAGE). Further support is provided by the Global Commons Stewardship (GCS) project funded by the University of Tokyo/ Institute for Future Initiatives, and by the Food System Economics Commission (FSEC) funded by Rockefeller Foundation (no. 2020 FOD 008) and Wellcome Trust (no. 221362/Z/20/Z).
Author information
Authors and Affiliations
Contributions
B.S. and E.K. designed the research with contributions from I.W., C.B., G.L. and the other authors. B.S., I.W., S.R. and A.D. performed the REMIND–MAgPIE modelling and the overall analysis, with contributions from the other authors. C.R., J.L. and C.W. performed the modelling for political institutions and conflict indicators. M.H. did the ocean modelling. B.S. and N.B. worked on the calculation of education and gender equality indicators. B.S. created all figures shown in the main paper; B.S., E.K., I.W., S.R., A.D. and C.R. created additional figures for the Extended Data and Supplementary Information. B.S., E.K., I.W., S.R., A.D. and C.R. wrote the paper with contributions and feedback from all other authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Climate Change thanks Alexandros Nikas, Toon Vandyck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Illustration of the scenario setup for this study.
The setup was designed to analyse the collective and individual impact of a range of sustainable development interventions: A - development, B - resource efficiency, C - climate change mitigation. D-food and energy: sufficient, healthy and sustainable nutrition; improved access to modern energy services in lower-income regions; ambitious shift to sustainable lifestyles in high-income regions; additional energy- and land-system sustainability policies. E - global equity: international burden sharing through climate and development finance. F - equality and poverty alleviation: progressive redistribution policies funded from the carbon pricing revenues. Note that the SDG icons attached to the interventions serve only as an illustration of the SDGs that are most strongly affected by the respective intervention, and are not intended to imply a specific grouping of SDGs.
Extended Data Fig. 2 Overview of the modelling framework.
We show the linkages between the different models comprising our modelling framework built around REMIND–MAgPIE. The linkage between REMIND and MAgPIE is bi-directional (iterative soft coupling), the linkages to the downstream models for further SDG indicators are one-directional. The most relevant variables passed between models are specified next to the arrows. The colour-coding of the additional models broadly matches the SDGs they cover.
Extended Data Fig. 3 Decomposition of the SD interventions D–F.
We unpack the additional SD interventions that are part of our SDP scenario (shown together in Fig. 2 in the main paper) into the steps D-energy (both demand & supply), D-food (nutrition & land use), E (global equity) and F (national redistribution). This decomposition highlights the effect of the individual interventions on the respective SDG indicator. Note that the interventions are ‘applied’ incrementally, that is we show the additional effect of an intervention starting from a scenario already including the previous interventions (same as in Fig. 2 in the main paper). Therefore the order of interventions matters in this decomposition. A more thorough discussion of this decomposition (including this figure) is given in SI Section 3.
Extended Data Fig. 4 Regional outcomes for selected indicators that describe key dynamics of the land and food system.
Transparent wide bars represent 2030 values, solid thin bars are values for 2050 and the 2015 values are given by the dotted vertical lines. We show the SSP2-NDC (red, top), SSP1-1.5C (green, centre) and SDP-1.5C (blue, bottom) scenarios; the SSP1-NDC scenario is omitted for reasons of visual clarity. a, Drivers of land use (crop demand, the share of plant-based protein in total dietary protein supply and bioenergy demand), b, Production and food system characteristics (N surplus on cropland, cereal yields and food price index w.r.t. 2010), c, Agricultural land (including cropland for food/feed crops and dedicated bioenergy crops as well as pasture) d, Forest cover differentiated between unmanaged (primary as well as secondary) forest and managed forest (including timber plantations and afforestation). Region abbreviations: Sub-Saharan Africa (SSA), India (IND), Latin America (LAM), European Union (EUR), United States of America (USA). A more detailed discussion on the land and food system (including this figure) is given in Section 4.1 of the SI.
Extended Data Fig. 5 Regional and sectoral outcomes for selected energy system dynamics indicators.
Transparent wide bars represent 2030 values, solid thin bars are values for 2050, the 2015 values are given by the dotted vertical line. We show the SSP2-NDC (red, top), SSP1-1.5C (green, centre) and SDP-1.5C (blue, bottom) scenarios; the SSP1-NDC scenario is omitted for reasons of visual clarity. a, Sectoral final energy demand per capita, b, Electricity and hydrogen share of final energy, by sector c, Total final energy demand compared to the 2050 values of Grubler et al.34 and Millwards-Hopkins et al.43 and the 2030 values of the IEA ‘Sustainable Development’ scenario113. Note the imperfect mapping between the IEA ‘Africa’ region and our SSA region. The Grubler et al. model only distinguishes between two model regions (Global North and Global South). d, Sectoral CO2 emissions. Region abbreviations: Sub-Saharan Africa (SSA), India (IND), China (CHA), Europe (EUR), United States of America (USA). A more detailed discussion on the energy system (including this figure) is given in Section 4.2 of the SI.
Supplementary information
Supplementary Information
Supplementary results, text, Tables 1–6, Figs. 1–27 and references.
Rights and permissions
About this article
Cite this article
Soergel, B., Kriegler, E., Weindl, I. et al. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Chang. 11, 656–664 (2021). https://doi.org/10.1038/s41558-021-01098-3
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41558-021-01098-3
This article is cited by
-
Representing gender inequality in scenarios improves understanding of climate challenges
Nature Climate Change (2025)
-
Multiple planetary boundaries preclude biomass crops for carbon capture and storage outside of agricultural areas
Communications Earth & Environment (2025)
-
Electro-spun nanofibers-based triboelectric nanogenerators in wearable electronics: status and perspectives
npj Flexible Electronics (2025)
-
Conservation outcomes of dietary transitions across different values of nature
Nature Sustainability (2025)
-
Expert perspectives on incorporating justice considerations into integrated assessment modelling
npj Climate Action (2025)