Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tonic type I interferon signaling optimizes the antiviral function of plasmacytoid dendritic cells

Abstract

Plasmacytoid dendritic cells (pDCs) mount powerful antiviral type I interferon (IFN-I) responses, yet only a fraction of pDCs produces high levels of IFN-I. Here we report that peripheral pDCs in naive mice comprise three subsets (termed A, B and C) that represent progressive differentiation stages. This heterogeneity was generated by tonic IFN-I signaling elicited in part by the cGAS/STING and TLR9 DNA-sensing pathways. A small ‘IFN-I-naive’ subset (pDC-A) could give rise to other subsets; it was expanded in STING deficiency or after the IFN-I receptor blockade, but was abolished by exogenous IFN-I. In response to RNA viruses, pDC-A showed increased Bcl2-dependent survival and superior IFN-I responses, but was susceptible to virus infection. Conversely, the majority of pDCs comprised the ‘IFN-I-primed’ subsets (pDC-B/C) that showed lower IFN-I responses and poor survival, but did not support virus replication. Thus, tonic IFN-I signaling decreases the cytokine-producing capacity and survival of pDCs but increases their virus resistance, facilitating optimal antiviral responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mature splenic pDCs show transcriptional heterogeneity.
Fig. 2: Mature splenic pDCs comprise three transcriptionally and phenotypically distinct subsets.
Fig. 3: Prospective identification of pDC subsets and their differentiation trajectory.
Fig. 4: pDC heterogeneity is generated by tonic IFN-I signaling that partially depends on cGAS/STING and TLR9 signaling.
Fig. 5: pDC heterogeneity correlates with distinct cytokine-producing capacity.
Fig. 6: pDC heterogeneity and function are dynamically modulated by IFN-I signaling.
Fig. 7: pDC heterogeneity correlates with distinct responses and susceptibility to virus infection.
Fig. 8: Differential survival of pDC subsets.

Data availability

All sequencing data have been deposited in the NCBI Gene Expression Omnibus database under accession number GSE252191. All other data are presented in the paper or are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Mesev, E. V., LeDesma, R. A. & Ploss, A. Decoding type I and III interferon signalling during viral infection. Nat. Microbiol. 4, 914–924 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS-STING pathway in health and disease. Nat. Rev. Genet. 20, 657–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Adams, N. M., Das, A., Yun, T. J. & Reizis, B. Ontogeny and function of plasmacytoid dendritic cells. Annu. Rev. Immunol. 42, 347–373 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Swiecki, M., Gilfillan, S., Vermi, W., Wang, Y. & Colonna, M. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8+ T cell accrual. Immunity 33, 955–966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cervantes-Barragan, L. et al. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood 109, 1131–1137 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Cervantes-Barragan, L. et al. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc. Natl Acad. Sci. USA 109, 3012–3017 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cisse, B. et al. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135, 37–48 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Valente, M. et al. Novel mouse models based on intersectional genetics to identify and characterize plasmacytoid dendritic cells. Nat. Immunol. 24, 714–728 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leylek, R. et al. Integrated cross-species analysis identifies a conserved transitional dendritic cell population. Cell Rep. 29, 3736–3750 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sulczewski, F. B. et al. Transitional dendritic cells are distinct from conventional DC2 precursors and mediate proinflammatory antiviral responses. Nat. Immunol. 24, 1265–1280 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodrigues, P. F. et al. pDC-like cells are pre-DC2 and require KLF4 to control homeostatic CD4 T cells. Sci. Immunol. 8, eadd4132 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brouiller, F. et al. Single-cell RNA-seq analysis reveals dual sensing of HIV-1 in blood Axl+ dendritic cells. iScience 26, 106019 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krug, A. et al. Identification of CpG oligonucleotide sequences with high induction of IFN-ɑ/β in plasmacytoid dendritic cells. Eur. J. Immunol. 31, 2154–2163 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Yun, T. J. et al. Human plasmacytoid dendritic cells mount a distinct antiviral response to virus-infected cells. Sci. Immunol. 6, eabc7302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wimmers, F. et al. Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-alpha production by plasmacytoid dendritic cells. Nat. Commun. 9, 3317 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kumagai, Y. et al. Alveolar macrophages are the primary interferon-ɑ producer in pulmonary infection with RNA viruses. Immunity 27, 240–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Scheu, S., Dresing, P. & Locksley, R. M. Visualization of IFNβ production by plasmacytoid versus conventional dendritic cells under specific stimulation conditions in vivo. Proc. Natl Acad. Sci. USA 105, 20416–20421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bauer, J. et al. Cutting edge: IFN-β expression in the spleen is restricted to a subpopulation of plasmacytoid dendritic cells exhibiting a specific immune modulatory transcriptome signature. J. Immunol. 196, 4447–4451 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Tomasello, E. et al. Molecular dissection of plasmacytoid dendritic cell activation in vivo during a viral infection. EMBO J. 37, e98836 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abbas, A. et al. The activation trajectory of plasmacytoid dendritic cells in vivo during a viral infection. Nat. Immunol. 21, 983–997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Keeffe, M. et al. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J. Exp. Med. 196, 1307–1319 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bjorck, P., Leong, H. X. & Engleman, E. G. Plasmacytoid dendritic cell dichotomy: identification of IFN-ɑ producing cells as a phenotypically and functionally distinct subset. J. Immunol. 186, 1477–1485 (2011).

    Article  PubMed  Google Scholar 

  23. Niederquell, M. et al. Sca-1 expression defines developmental stages of mouse pDCs that show functional heterogeneity in the endosomal but not lysosomal TLR9 response. Eur. J. Immunol. 43, 2993–3005 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Swiecki, M. et al. Microbiota induces tonic CCL2 systemic levels that control pDC trafficking in steady state. Mucosal Immunol. 10, 936–945 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Matsui, T. et al. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J. Immunol. 182, 6815–6823 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Ghanem, M. H. et al. Proteomic and single-cell transcriptomic dissection of human plasmacytoid dendritic cell response to influenza virus. Front. Immunol. 13, 814627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Du, Y. et al. Altered X-chromosome inactivation of the TLR7/8 locus and heterogeneity of pDCs in systemic sclerosis. J. Exp. Med. 222, e20231809 (2025).

    Article  CAS  PubMed  Google Scholar 

  28. Silvin, A. et al. Constitutive resistance to viral infection in human CD141+ dendritic cells. Sci. Immunol. 2, eaai8071 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Frenz, T. et al. Independent of plasmacytoid dendritic cell (pDC) infection, pDC triggered by virus-infected cells mount enhanced type I IFN responses of different composition as opposed to pDC stimulated with free virus. J. Immunol. 193, 2496–2503 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Rodrigues, P. F. et al. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat. Immunol. 19, 711–722 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dress, R. J. et al. Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat. Immunol. 20, 852–864 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Feng, J. et al. Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells. Immunity 55, 405–422 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parekh, N. J., Winship, D., Van Dis, E. & Stetson, D. B. Regulation and dynamics of IFN-β expression revealed with a knockin reporter mouse. J. Immunol. 213, 1858–1868 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Lind, N. A., Rael, V. E., Pestal, K., Liu, B. & Barton, G. M. Regulation of the nucleic acid-sensing Toll-like receptors. Nat. Rev. Immunol. 22, 224–235 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Schaupp, L. et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181, 1080–1096 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Stefan, K. L., Kim, M. V., Iwasaki, A. & Kasper, D. L. Commensal microbiota modulation of natural resistance to virus infection. Cell 183, 1312–1324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Erttmann, S. F. et al. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity 55, 847–861 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Asselin-Paturel, C. et al. Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J. Exp. Med. 201, 1157–1167 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ganal, S. C. et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Winkler, E. S. et al. The intestinal microbiome restricts alphavirus infection and dissemination through a bile acid-type I IFN signaling axis. Cell 182, 901–918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barchet, W. et al. Virus-induced interferon ɑ production by a dendritic cell subset in the absence of feedback signaling in vivo. J. Exp. Med. 195, 507–516 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kindler, E. et al. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathog. 13, e1006195 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carrington, E. M. et al. Prosurvival Bcl-2 family members reveal a distinct apoptotic identity between conventional and plasmacytoid dendritic cells. Proc. Natl Acad. Sci. USA 112, 4044–4049 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marsman, C. et al. Plasmacytoid dendritic cell heterogeneity is defined by CXCL10 expression following TLR7 stimulation. Immunol. Cell Biol. 96, 1083–1094 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Alculumbre, S. G. et al. Diversification of human plasmacytoid predendritic cells in response to a single stimulus. Nat. Immunol. 19, 63–75 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Weng, C. et al. Deciphering cell states and genealogies of human haematopoiesis. Nature 627, 389–398 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, P. et al. Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37, 867–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Swiecki, M. et al. Type I interferon negatively controls plasmacytoid dendritic cell numbers in vivo. J. Exp. Med. 208, 2367–2374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Motwani, M. et al. cGAS-STING pathway does not promote autoimmunity in murine models of SLE. Front. Immunol. 12, 605930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Psarras, A. et al. Functionally impaired plasmacytoid dendritic cells and non-haematopoietic sources of type I interferon characterize human autoimmunity. Nat. Commun. 11, 6149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zuniga, E. I., Liou, L. Y., Mack, L., Mendoza, M. & Oldstone, M. B. Persistent virus infection inhibits type I interferon production by plasmacytoid dendritic cells to facilitate opportunistic infections. Cell Host Microbe 4, 374–386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, L. N., Burke, S., Montoya, M. & Borrow, P. Multiple mechanisms contribute to impairment of type 1 interferon production during chronic lymphocytic choriomeningitis virus infection of mice. J. Immunol. 182, 7178–7189 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Sisirak, V. et al. Impaired IFN-ɑ production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res. 72, 5188–5197 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Schmitt, H. et al. Siglec-H protects from virus-triggered severe systemic autoimmunity. J. Exp. Med. 213, 1627–1644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bunin, A. et al. Protein tyrosine phosphatase PTPRS is an inhibitory receptor on human and murine plasmacytoid dendritic cells. Immunity 43, 277–288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dalod, M. et al. Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon ɑ/β. J. Exp. Med. 197, 885–898 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saitoh, S. I. et al. TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells. Nat. Commun. 8, 1592 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kim, S. et al. Self-priming determines high type I IFN production by plasmacytoid dendritic cells. Eur. J. Immunol. 44, 807–818 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Uccellini, M. B. & Garcia-Sastre, A. ISRE-reporter mouse reveals high basal and induced type I IFN responses in inflammatory monocytes. Cell Rep. 25, 2784–2796 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Soni, C. et al. Plasmacytoid dendritic cells and type I interferon promote extrafollicular B cell responses to extracellular self-DNA. Immunity 52, 1022–1038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mathian, A., Weinberg, A., Gallegos, M., Banchereau, J. & Koutouzov, S. IFN-ɑ induces early lethal lupus in preautoimmune (New Zealand Black x New Zealand White)F1 but not in BALB/c mice. J. Immunol. 174, 2499–2506 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Mach, N. et al. Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res. 60, 3239–3246 (2000).

    CAS  PubMed  Google Scholar 

  64. Turner, M. J., Jellison, E. R., Lingenheld, E. G., Puddington, L. & Lefrancois, L. Avidity maturation of memory CD8 T cells is limited by self-antigen expression. J. Exp. Med. 205, 1859–1868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chua, M. M., MacNamara, K. C., San Mateo, L., Shen, H. & Weiss, S. R. Effects of an epitope-specific CD8+ T-cell response on murine coronavirus central nervous system disease: protection from virus replication and antigen spread and selection of epitope escape mutants. J. Virol. 78, 1150–1159 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Becht, E. et al. High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning. Sci. Adv. 7, eabg0505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Buggenum, J. A. et al. A covalent and cleavable antibody-DNA conjugation strategy for sensitive protein detection via immuno-PCR. Sci. Rep. 6, 22675 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Khodadadi-Jamayran, A. et al. iCellR: combined coverage correction and principal component alignment for batch alignment in single-cell sequencing analysis. Preprint at bioRxiv https://doi.org/10.1101/2020.03.31.019109 (2020).

  73. McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  74. Heng, T. S. et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Granot, T. et al. Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 46, 504–515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Carpenter, D. J. et al. Human immunology studies using organ donors: impact of clinical variations on immune parameters in tissues and circulation. Am. J. Transpl. 18, 74–88 (2018).

    Article  CAS  Google Scholar 

  79. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Hao (New York Genome Center) for help with CITE-seq, K. Khanna for VSV-GFP, I. Aifantis and D. Papaioannou for Venetoclax, D. Littman and T. Najar for OT-II mice and S. Weiss (University of Pennsylvania) for M-CoV-GFP. This study was supported by the NIH grants no. HL145997 and no. CA009161 (J.N.P.), no. AI072571 (B.R.), no. AI158808 (J.I.) and no. AI128949 (B.R., S.P.W., D.L.F.), and the German Research Foundation grant no. EI1185/1-1 (A.E.). We acknowledge the use of resources provided by NYU Genome Technology Center (GTC; RRID:SCR_017929), Applied Bioinformatics Laboratories (RRID:SCR_019178), High Performance Computing Facility (HPCF), Cytometry and Cell Sorting Laboratory (CSL; RRID:SCR_019179) and the Experimental Pathology Research Laboratory (RRID:SCR_017928), and shared resources partially supported by NIH grant no. P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

J.N.P., R.A.M.-A., H.N., F.B.S., A.E., O.A.P., A.D. and J.F. performed experiments and analyzed results. J.N.P., E.E., A.C.R., A.K.-J. and I.D. developed analytical methods and analyzed results. J.Z. advised on the statistical analysis of results. M.S. and P.S. developed experimental technology. E.I., S.S., K.C., S.B.K. D.B.S., S.P.W. and D.L.F. provided research materials. C.S. provided conceptual input. B.R. and J.I. supervised the project and analyzed the results. J.N.P. and B.R. conceived the project and wrote the paper with input from all authors.

Corresponding authors

Correspondence to Joseph N. Pucella, Juliana Idoyaga or Boris Reizis.

Ethics declarations

Competing interests

M.S. and P.S. are inventors on a patent related to the CITE-seq method and are or have been employed by 10x Genomics, Inc., but were not affiliated with it or any other commercial entity at the time of the work described in this paper. B.R. is an advisor for Related Sciences and a co-founder of Danger Bio. J.I. serves on the advisory board of Immunitas Therapeutics. None of these affiliations are related to the present work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Michael Chopin, Marc Dalod, Tsuneyasu Kaisho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: L. A. Dempsey, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Initial analysis of the single-cell transcriptome of splenic pDCs.

Sorted pDCs from pooled spleens of naive mice were subjected to multiome analysis by single-nuclei RNA-seq and ATAC-seq (Fig. 1), and the former was analyzed. (a) UMAP plot of cells based on mRNA transcript reads, indicating the original 9 clusters. (b) Heatmap of top 10 marker genes of each cluster (rows) across individual cells (columns). (c) Correlation heatmap of the original 9 clusters. (d) Correlation heatmap of the reduced clusters (Mt clusters in Fig. 1a).

Source data

Extended Data Fig. 2 Initial analysis of the single-cell chromatin of splenic pDCs.

Sorted pDCs from pooled spleens of naive mice were subjected to multiome analysis by single-nuclei RNA-seq and ATAC-seq (Fig. 1), and the latter was analyzed. (a) UMAP plot of cells based on ATAC-Seq reads, indicating the original 9 clusters. (b) Correlation heatmap of the original 9 clusters and after cluster reduction, with the corresponding Leiden clustering resolutions indicated. The heatmap on the right corresponds to the four Ma clusters in Fig. 1e. (c) The projection of Ma clusters onto the UMAP plot based on RNA-Seq from Fig. 1a. Shown are combined projections of all clusters (left panel) and feature plots of individual Mt clusters (right panel). (d) The fraction of Ma clusters within the total dataset and within each Mt cluster.

Source data

Extended Data Fig. 3 Additional analysis of CITE-Seq of splenic pDCs.

Sorted pDCs from spleens of three individual naive mice were hashtagged and analyzed by CITE-Seq for single-cell transcriptome and phenotype (antibody-derived tags, ADT). (a) UMAP plot and clustering of the dataset prior to the tDC cluster removal (clusters are numbered and colored randomly). (b-c) Violin plots showing transcript levels of key pDC (b) and tDC (c) identity genes. (d) Heatmap of top 10 marker gene expression based on mRNA transcripts or ADT reads for the clusters in panel A. (e) Heatmap of ADT for markers expressed in pDCs across the three Ct clusters defined in Fig. 2b. (f) RNA velocity analysis. Shown are velocity vectors projected onto the KnetL and UMAP plots from Fig. 2b, with the three Ct clusters indicated.

Source data

Extended Data Fig. 4 Verification of transcriptional heterogeneity in murine splenic pDCs.

A previously reported scRNA-seq dataset of splenic pDCs from naive mice (GSE114313) was reanalyzed to assess steady-state heterogeneity. (a) UMAP plot, with clusters from the KNetL clustering in the next panel indicated by colors. (b) KNetL plot and clustering. (c) Violin plots showing transcript levels of key pDC identity genes by KNetL clusters. (d) Heatmap of marker gene expression for KNetL clusters. (e) Feature plots of key marker gene transcripts on the KNetL plot from panel B; cluster with prominent ISG expression (cluster 2) is highlighted. (f) The expression of MHC cl II transcript shown on the feature plot (with the MHC cl. II-low cluster 5 highlighted) and violin plot.

Source data

Extended Data Fig. 5 The analysis of transcriptional heterogeneity in human pDCs.

A previously reported scRNA-seq dataset of pDCs from peripheral blood of three healthy human donors (GSE189120) was reanalyzed to assess steady-state heterogeneity. (a) KNetL and UMAP plots, with KNetL-based human transcriptome (Ht) clusters indicated. (b) Violin plots showing transcript levels of key pDC identity genes by KNetL clusters. (c) KNetL plots of Ht clusters, split up by individual donor. (d) Heatmap of marker gene expression for KNetL clusters.

Source data

Extended Data Fig. 6 Prospective identification and isolation of murine pDCs.

(a-b) Gating strategy for the analysis of pDC subsets in the spleen (panel a) and bone marrow (panel b). (c) Gating strategy for the recovery of pDC subsets in the hosts of adoptive transfer experiments in Fig. 3k-m. (d) Gating strategy for the sorting (top panel) and post-sort purity (bottom panel) of pDC subsets isolated for functional experiments in Figs. 78.

Source data

Extended Data Fig. 7 Modulation of pDC heterogeneity in bone marrow-derived pDCs by IFN-I blockade.

(a) Total BM cells were harvested from naïve wild-type mice and cultured in the presence of Flt3L for 12 days to induce DC differentiation. Anti-IFNAR1 mAb was added throughout the culture (Blockade), during the first 6 days (D6 washoff) or during the last 6 days (D6 blockade). (b) The dynamics of Sca1 expression on pDCs between days 6 and 12 of culture, as determined by flow cytometry. Cultures from Ifnar1−/− mice were used as controls (dashed line). Data represent averages of biological replicates (cultures from individual mice) from one experiment. (c) The fraction of Sca1+ pDCs on days 6 and 9 of culture. Bars represent means ± SD, symbols represent biological replicates (cultures from individual mice) from one experiment. Statistical significance was analyzed using one-way ANOVA followed by Tukey’s test. * p < 0.05; ** p < 0.005; *** p < 0.0005; **** p < 0.00005. Illustration in a created using BioRender.com.

Source data

Supplementary information

Reporting Summary

Supplementary Table 1

Marker genes of cell clusters in the single-nucleus RNA-seq of mouse pDCs.

Supplementary Table 2

Marker peaks of cell clusters in the single-nucleus ATAC-seq of mouse pDCs.

Supplementary Table 3

Marker genes of cell clusters in the CITE-seq of mouse pDCs.

Supplementary Table 4

Gene expression in prospectively isolated subsets of mouse pDCs.

Source data

Source Data for Figs. 1–8 and Extended Data Figs. 1–7

Statistical source data.

Source Data Fig. 2

Raw image files (JPEG) for Fig. 2g,h.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pucella, J.N., Maqueda-Alfaro, R.A., Ni, H. et al. Tonic type I interferon signaling optimizes the antiviral function of plasmacytoid dendritic cells. Nat Immunol (2025). https://doi.org/10.1038/s41590-025-02279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41590-025-02279-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing