Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Biomolecular engineering enriches the toolkit of chemical engineers, enabling them to tackle diverse challenges in biotechnology and medicine; we welcome submissions in this space.
Researchers Katrina Knauer, Taylor Uekert and Alberta Carpenter, each at different stages of their careers, share perspectives on the national laboratory research ecosystem and how it can inspire transformative work in plastics recycling, sustainable manufacturing and beyond.
Quantifying the strength of noncovalent interactions in supramolecular host–guest systems is key to guiding molecular design for a desired application. Now, a quantitative relationship between noncovalent interactions and electrochemistry is established that provides a new dimension for investigations into noncovalent interactions and enables the control of electrochemical properties in battery engineering.
Optimizing CO2-to-CO electrolyzers is important for developing tandem electrolysis processes. Now an efficient precious metal-free CO2-to-CO electrolyzer cathode design allows operation under a low stoichiometric CO2 excess ratio that yields a molar CO concentration of 70% in the exit stream along with a diagnostic approach to its catalytic and mass transport characteristics.
A self-driving lab, called Fast-Cat, is developed for the rapid, autonomous Pareto-front mapping of homogeneous catalysts in high-pressure, high-temperature gas–liquid reactions. The efficacy of Fast-Cat was demonstrated in performing Pareto-front mappings of phosphorus-based ligands for the hydroformylation of olefins.
We explore the challenges and opportunities for electrochemical energy storage technologies that harvest active materials from their surroundings. Progress hinges on advances in chemical engineering science related to membrane design; control of mass transport, reaction kinetics and precipitation at electrified interfaces; and regulation of electrocrystallization of metals through substrate design.
Water management is crucial for enhancing economic viability and minimizing the environmental impact of direct air capture (DAC) technologies, but the high energy intensity necessitates heat recovery techniques. This Perspective discusses several front-end and back-end strategies for coupling water management with heat integration in DAC processes.
Fine chemical production mostly relies on petroleum-based chemical synthesis. Now, a process is established to produce benzyl acetate, the main fragrance molecule in jasmine scent, from renewable sugars with engineered bacteria.
A self-driving catalysis laboratory, Fast-Cat, is presented for efficient high-throughput screening of high-pressure, high-temperature, gas–liquid reaction conditions using rhodium-catalyzed hydroformylation as a case study. Fast-Cat is used to Pareto map the reaction space and investigate the varying performance of several phosphorus-based hydroformylation ligands.
Benzyl acetate is a valuable aromatic ester compound used in flavorings and fragrances. Now, a microbial approach is developed to produce benzyl acetate from d-glucose using metabolically engineered Escherichia coli strains and exploiting delayed co-culture strategies.
Kai Qiao, a senior engineer at SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, and a visiting professor in the Department of Chemical Engineering at Dalian University of Technology, talks to Nature Chemical Engineering about his career as a chemical engineer working on biomass-derived chemical production.
Directing CO2 electroreduction toward a single C2 product poses challenges because the reaction mechanism is unclear. Now, oxygen affinity is identified as a potential key descriptor to manipulate the selectivity of ethylene versus ethanol.
Designing liquid devices with liquid pathways that can be reconfigured on-demand is important to many chemical and biological applications. Now, a facile approach enables reconfigurable liquid devices through precisely arranged connected liquid droplets that can be rapidly assembled and disassembled.
Polyimide-derived carbon molecular sieve (CMS) membranes mark an important step for various current, key energy-intensive separations. The excellent separation performance combined with economical scalability make CMS membranes ready to enable energy-transition-focused gas separations.
We asked a group of chemical engineering educators with a broad set of research interests to reimagine the undergraduate curriculum, highlighting both current strengths and areas of needed development.
Selective recovery of gold from electronic waste using mild reagents is a challenge. Now a photocatalytic technology is reported to enable highly selective gold dissolution through solvent pH adjustment. This process is scaled up to allow for the efficient handling of a single batch of 10 kg of electronic waste.