Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HDAC1 has intrinsic protease activity and regulates transcription through clipping histone H3 N-terminal tail

Subjects

Abstract

Histone deacetylase 1 (HDAC1) has been mainly characterized as a factor removing acetyl groups from histone and non-histone proteins as well as inhibiting gene transcription. However, HDAC1 is also involved in positively regulating transcription of particular genes through as yet unknown mechanisms. Here we report the identification of an intrinsic protease activity residing in HDAC1 and capable of cleaving histone H3 between lysine 20 and alanine 21. Such HDAC1 protease activity toward H3 N-terminal tail (H3NT) depends on its stable association with nucleosomes and is required for bladder cancer cells to grow in an uncontrolled manner. Mechanistically, growth stimulatory genes are selectively activated by HDAC1-dependent H3NT proteolysis, and the levels of H3NT clipping are much higher in bladder cancer cells, serving as a cancer-specific chromatin signature. Moreover, artificial tethering of HDAC1 to target genes using CRISPR-dCas9 systems is sufficient for establishing H3NT proteolysis and achieving active transcriptional state in HDAC1-deficient cells, resulting in a higher proliferative capacity of cancer cells. Not only does this work establish HDAC1 as a new protease targeting H3NT, but our data also define a new mechanism underlying HDAC1-driven tumorigenesis by linking H3NT proteolysis to oncogenic gene expression program.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteolytic cleavage of histone H3NT catalyzed by HDAC1.
Fig. 2: Identification and characterization of proteolytically inactive HDAC1 mutants.
Fig. 3: HDAC1-nucleosome interaction dependent on HDAC1 C-terminal domain and H3NT.
Fig. 4: HDAC1-driven dysregulation of gene expression program in bladder cancer cells.
Fig. 5: Tumorigenic potential of bladder cancer cells promoted by HDAC1-dependent H3NT proteolysis.
Fig. 6: Targeted transactivation artificially generated by H3NT proteolysis in bladder cancer cells.

Similar content being viewed by others

Data availability

The gene expression array data has been deposited in the NCBI Gene Expression Omnibus (GEO) database under the GEO accession number GSE272621.

References

  1. Cosgrove MS, Boeke JD, Wolberger C. Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol. 2004;11:1037–43.

    Article  CAS  PubMed  Google Scholar 

  2. Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol. 2006;7:437–47.

    Article  CAS  PubMed  Google Scholar 

  3. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee JS, Smith E, Shilatifard A. The language of histone crosstalk. Cell. 2010;142:682–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park J, Lee K, Kim K, Yi SJ. The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther. 2022;7:217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suganuma T, Workman JL. Crosstalk among Histone Modifications. Cell. 2008;135:604–7.

    Article  CAS  PubMed  Google Scholar 

  7. Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkuhler C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res. 2007;17:195–211.

    Article  CAS  PubMed  Google Scholar 

  8. Milazzo G, Mercatelli D, Di Muzio G, Triboli L, De Rosa P, Perini G, et al. Histone deacetylases (HDACs): evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes 2020;11:556.

  9. Park SY, Kim JS. A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med. 2020;52:204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6:a018713.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Delcuve GP, Khan DH, Davie JR. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenet. 2012;4:5.

    Article  CAS  Google Scholar 

  12. Kelly RDW, Stengel KR, Chandru A, Johnson LC, Hiebert SW, Cowley SM. Histone deacetylases maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and noncoding loci. Genome Res. 2024;34:34–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1:19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn CO, Heidecke CD, et al. Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut. 2012;61:439–48.

    Article  CAS  PubMed  Google Scholar 

  15. Dhordain P, Lin RJ, Quief S, Lantoine D, Kerckaert JP, Evans RM, et al. The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res. 1998;26:4645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Melnick A, Licht JD. Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol. 2002;9:322–32.

    Article  PubMed  Google Scholar 

  17. Millard CJ, Watson PJ, Celardo I, Gordiyenko Y, Cowley SM, Robinson CV, et al. Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol Cell. 2013;51:57–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Siddiqui H, Solomon DA, Gunawardena RW, Wang Y, Knudsen ES. Histone deacetylation of RB-responsive promoters: requisite for specific gene repression but dispensable for cell cycle inhibition. Mol Cell Biol. 2003;23:7719–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng T, Kiser K, Grasse L, Iles L, Bartholomeusz G, Samaniego F, et al. Expression of histone deacetylase (HDAC) family members in bortezomib-refractory multiple myeloma and modulation by panobinostat. Cancer Drug Resist. 2021;4:888–902.

    PubMed  PubMed Central  Google Scholar 

  20. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370:737–49.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ma P, Schultz RM. HDAC1 and HDAC2 in mouse oocytes and preimplantation embryos: specificity versus compensation. Cell Death Differ. 2016;23:1119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bradner JE, Mak R, Tanguturi SK, Mazitschek R, Haggarty SJ, Ross K, et al. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc Natl Acad Sci USA. 2010;107:12617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 1996;272:408–11.

    Article  CAS  PubMed  Google Scholar 

  24. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.

    Article  CAS  PubMed  Google Scholar 

  25. Kim E, Bisson WH, Lohr CV, Williams DE, Ho E, Dashwood RH, et al. Histone and non-histone targets of dietary deacetylase inhibitors. Curr Top Med Chem. 2016;16:714–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000;408:377–81.

    Article  CAS  PubMed  Google Scholar 

  27. Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M. E2F family members are differentially regulated by reversible acetylation. J Biol Chem. 2000;275:10887–92.

    Article  CAS  PubMed  Google Scholar 

  28. Bernstein BE, Tong JK, Schreiber SL. Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci USA. 2000;97:13708–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kidder BL, Palmer S. HDAC1 regulates pluripotency and lineage specific transcriptional networks in embryonic and trophoblast stem cells. Nucleic Acids Res. 2012;40:2925–39.

    Article  CAS  PubMed  Google Scholar 

  30. Kim MY, Yan B, Huang S, Qiu Y. Regulating the regulators: the role of histone deacetylase 1 (HDAC1) in erythropoiesis. Int J Mol Sci. 2020;21:8460.

  31. Kurdistani SK, Robyr D, Tavazoie S, Grunstein M. Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet. 2002;31:248–54.

    Article  CAS  PubMed  Google Scholar 

  32. Wang A, Kurdistani SK, Grunstein M. Requirement of Hos2 histone deacetylase for gene activity in yeast. Science. 2002;298:1412–4.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138:1019–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gregoricchio S, Polit L, Esposito M, Berthelet J, Delestre L, Evanno E, et al. HDAC1 and PRC2 mediate combinatorial control in SPI1/PU.1-dependent gene repression in murine erythroleukaemia. Nucleic Acids Res. 2022;50:7938–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dhaenens M. Histone clipping: the punctuation in the histone code. EMBO Rep. 2021;22:e53440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Santos-Rosa H, Kirmizis A, Nelson C, Bartke T, Saksouk N, Cote J, et al. Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol. 2009;16:17–22.

    Article  CAS  PubMed  Google Scholar 

  37. Tilley DO, Abuabed U, Zimny Arndt U, Schmid M, Florian S, Jungblut PR, et al. Histone H3 clipping is a novel signature of human neutrophil extracellular traps. Elife. 2022;11:e68283.

  38. Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, et al. Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell. 2008;135:284–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khalkhali-Ellis Z, Goossens W, Margaryan NV, Hendrix MJ. Cleavage of histone 3 by cathepsin D in the involuting mammary gland. PLoS One. 2014;9:e103230.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu H, Wang C, Lee S, Deng Y, Wither M, Oh S, et al. Clipping of arginine-methylated histone tails by JMJD5 and JMJD7. Proc Natl Acad Sci USA. 2017;114:E7717–E7726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim K, Punj V, Kim JM, Lee S, Ulmer TS, Lu W, et al. MMP-9 facilitates selective proteolysis of the histone H3 tail at genes necessary for proficient osteoclastogenesis. Genes Dev. 2016;30:208–19.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim K, Shin Y, Kim J, Ulmer TS, An W. H3K27me1 is essential for MMP-9-dependent H3N-terminal tail proteolysis during osteoclastogenesis. Epigenet Chromatin. 2018;11:23.

    Article  Google Scholar 

  43. Shin Y, Ghate NB, Moon B, Park K, Lu W, An W. DNMT and HDAC inhibitors modulate MMP-9-dependent H3 N-terminal tail proteolysis and osteoclastogenesis. Epigenet Chromatin. 2019;12:25.

    Article  Google Scholar 

  44. Kim K, Kim JM, Kim JS, Choi J, Lee YS, Neamati N, et al. VprBP has intrinsic kinase activity targeting histone H2A and represses gene transcription. Mol Cell. 2013;52:459–67.

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 2016;6:a026831.

  46. Shin Y, Kim S, Ghate NB, Rhie SK, An W. MMP-9 drives the melanomagenic transcription program through histone H3 tail proteolysis. Oncogene. 2022;41:560–70.

    Article  CAS  PubMed  Google Scholar 

  47. Shin Y, Kim S, Liang G, An W MMP-9-dependent proteolysis of the histone H3 N-terminal tail: a critical epigenetic step in driving oncogenic transcription and colon tumorigenesis. Mol Oncol. 2024;18:1–19.

  48. Bahl S, Ling H, Acharige NPN, Santos-Barriopedro I, Pflum MKH, Seto E. EGFR phosphorylates HDAC1 to regulate its expression and anti-apoptotic function. Cell Death Dis. 2021;12:469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McGinty RK, Tan S. Histone, nucleosome, and chromatin structure. In: Workman JL, Abmayr SM editors. Fundamentals of chromatin. New York: Springer New York; 2014. p. 1–28.

  50. Kim J, Shin Y, Lee S, Kim M, Punj V, Lu JF, et al. Regulation of breast cancer-induced osteoclastogenesis by MacroH2A1.2 involving EZH2-mediated H3K27me3. Cell Rep. 2018;24:224–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim JM, Shin Y, Lee S, Kim MY, Punj V, Shin HI, et al. MacroH2A1.2 inhibits prostate cancer-induced osteoclastogenesis through cooperation with HP1alpha and H1.2. Oncogene. 2018;37:5749–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim K, Heo K, Choi J, Jackson S, Kim H, Xiong Y, et al. Vpr-binding protein antagonizes p53-mediated transcription via direct interaction with H3 tail. Mol Cell Biol. 2012;32:783–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shin Y, Kim S, Liang G, Ulmer TS, An W. VprBP/DCAF1 Triggers melanomagenic gene silencing through histone H2A phosphorylation. Biomedicines. 2023;11:2552.

  54. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  55. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47:D766–D773.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao X, Valen E, Parker BJ, Sandelin A. Systematic clustering of transcription start site landscapes. PLoS ONE. 2011;6:e23409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu G, He QY. ReactomePA: an R/Bioconductor package for Reactome pathway analysis and visualization. Mol Biosyst. 2016;12:477–9.

    Article  CAS  PubMed  Google Scholar 

  59. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate Ivetta Vorobyova at MIC (Molecular Imaging Center) USC for the performance of optical imaging (NIH S10OD021785) in the in vivo study.

Funding

This work was supported by NIH Grant AR073233 awarded to W.A. The study was also partly supported by award number P30CA014089 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

YS and WA conceived and designed the study. YS and SK performed experiments with contributions of SR. YS, SK, and WA analyzed data. YS, SK, and WA wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Woojin An.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal experiments were approved by the Institutional Animal Care and Use Committee of University of Southern California (NO. 11673), and were conducted in accordance with the committee’s institutional guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, Y., Kim, S., Rhie, S.K. et al. HDAC1 has intrinsic protease activity and regulates transcription through clipping histone H3 N-terminal tail. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01622-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41418-025-01622-4

Search

Quick links